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A B S T R A C T

This article elaborates on the seemingly impossible notion that a continuous elastic body subjected to dynamic
sources on its outer surface could ever be substituted in all of its essential qualities by a discrete model ac-
complished with finite elements. This topic is taken up herein and discussed in the context of a very simple two-
dimensional model involving the propagation of SH shear waves (or acoustic waves) in a homogeneous elastic
half-space. It is shown that there exists at least one discrete solid, referred to here as the Guddati Solid, which
from its external surface behaves exactly like the continuum and is able to transmit waves of any frequency and
any wavelength. This is a rather surprising finding in that it seems to contradict some well-known elastodynamic
representation theorems, not to mention falsify the widespread belief that a discrete system can never behave like
the continuum it purports to model. The purpose of this article is thus to present one example which disproves
this widely believed postulate.

1. Introduction

It seems clear that with the steadily increasing sophistication of
discrete models for elastodynamic problems in engineering and in sci-
ence, the accuracy and behavior of numerical models has steadily in-
creased, to the point that a refined model today may produce results
that are hardly distinguishable from the real thing, that is, from the
continuum that it replaces. But whatever the precision, those models
are still not 100% exact, that is, they maintain a small even if negligible
error in the solution, so in principle they attain the exact solution only
in the ideal limit of an infinitesimal grid.

There exist also some fundamental principles in linear elastodynamics
commonly referred to as representation theorems which make statements
about the allowable states of stress- and deformation fields within an
elastic body when it is subjected to sources applied somewhere. These are
in turn closely related to the Principle of Virtual Displacements, the re-
ciprocity principles of Maxwell-Betti, the Beltrami and Rayleigh principles,
and other theorems such as the Somigliana Integral equation that lie at the
heart of the Green’s functions formalism. For example, these theorems play
an important role in the theory of the Boundary Element Method (BEM)
and in the assessment of the seismic motions at some distance from a
causative earthquake fault. In essence, these representation theorems state
that when an elastic body surrounded by some well-defined boundary is
subjected to dynamic excitations onto its outer skin in the form of pre-
scribed tractions or prescribed displacements — or both — the displace-
ment field everywhere is unique and depends on the shape of the body and
its material configuration.

Indeed, if we knew the so-called Green’s functions (displacements
due to unit point loads) for any position and direction of an applied
point source on that surface, then we could just as well predict the
motions anywhere for any arbitrary combination of surface tractions
and displacements, and we would accomplish that by means of the
representation theorems alluded to, or at least we could do so in
principle. Change the solid without changing the size and character-
istics of the surface and the expressions for the Green’s functions will
change accordingly, and with that, the predicted displacements will
change everywhere. In the light of these technical considerations, it
would seem that if the continuous solid were to be replaced by a dis-
crete model, it could not possibly behave quite in the same fashion as
the continuum. In particular, it would seem unlikely that a discrete
model —no matter how smart and detailed — could ever replace the
original continuous solid exactly in all of its essential aspects. For one, it
could be expected that the discrete model might not even begin to
transmit the full frequency spectrum contained in an arbitrary excita-
tion in time.

But strange as it may seem, it turns out that in a series of extra-
ordinary yet admittedly abstruse papers penned by Guddati et al [1–4]
on the topics of One-Way Wave Equations and Transmitting Boundaries,
they come up with a remarkable discrete solid that exhibits this see-
mingly impossible characteristic, namely that from its external surface,
the discrete model feels and looks like the real continuous thing it re-
places, and it does so for any load combination on its surface, even if
not in its interior. At first this seemed so alien and strange to us that we
had to thoroughly check out the facts, and we thus determined that it
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was indeed true. Thinking that a broad readership might also enjoy
learning about this strange contraption, we decided to prepare this brief
article providing a succinct and transparent outline on the particulars of
this case, and doing so while avoiding needless complications.

2. Continuous layer underlain by continuous half-space

Consider first a continuous, homogeneous elastic half-space ≤z( 0)
subjected to anti-plane (SH) dynamic loads (or sources)

= =p p x z t( , 0, )y applied at its upper free surface =z( 0). These loads
can have any arbitrary spatial and/or temporal variation, including very
high frequencies. The half-space responds in turn to these load with
motions =u u x z t( , , )y . The origin of coordinates is placed at the sur-
face and the horizontal axis is defined in the full interval
−∞ < < ∞x[ ], see Fig. 1 on the left. The material properties of the half-
space are the shear modulus μ, the mass density ρ, and the shear wave
velocity =β μ ρ/ . When this problem is formulated in the frequency-
wavenumber domain, i.e. after a spatial-temporal Fourier transform is
applied on both p x t( , 0, )and u x t( , 0, ), it is found that the surface
tractions and observed displacements change into p k ω u k ω( , ), ( , )͠͠ re-
spectively, where k is the horizontal wavenumber and ω is the fre-
quency. Furthermore, it can also readily be shown [5] that in that do-
main, the tractions and displacements on the surface of the non-
discretized, continuous half-space (Fig. 1, left) are related by an exact
stiffness or impedance function ZH that depends on frequency and
wavenumber. That is, we find that these quantities are related as:

= = − =p k ω Z u k ω Z μ k k k ω β( , ) ( , ), , /͠͠ H H S S
2 2

(1)

Formally, the exact solution at the surface follows then from the
inverse Fourier transform
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Depending on the load characteristics (Fig. 1, left), this problem
will generate shear waves that propagate laterally and downwards
in all directions and leak energy into the abyss underneath. For ex-
ample, a line load at =x (0, 0) will elicit a displacement field
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(2) 2 2 , [5]. The solution posed by Eq. (2) is
exact in the sense that neither k nor ω are restricted in any way, and the
half-space can transmit waves of any wavelength, any frequency and in
any direction with respect to the vertical. That is, Eq. (2) provides the
exactmotion at the surface of the half-space for loads with any spatial or
temporal variation. Observe also that ZH does not contain any char-
acteristic length.

We now proceed to overlay the half-space with a homogeneous,
continuous layer of the same material properties and of arbitrary
thickness h, as shown in Fig. 1 on the right. If we also denote with
indices 1 and 2 the upper and lower bounding surfaces, then that layer,
on its own, would be characterized by an exact dynamic stiffness matrix
of the form [5]
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The complete system would ultimately be described by the equili-
brium equation
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Formally, we can now proceed to eliminate the auxiliary interface at
the bottom of the surface layer by means of condensation, after which
we obtain

= − + =−p Z Z Z Z Z u Z u[ ( ) ] ͠ ͠͠ H H1 11 12 22
1

21 1 1 (5)

As should be noticed, we have recovered the exact impedance of the
half-space, because the continuous layer in this case has exactly the
same material properties as the continuous half-space underneath. Thus,
the systems on the left and right of Fig. 1 produce exactly the same
result everywhere, as could have been expected.

3. The strange case of the Guddati solid

Although Guddati et al [1–4] — henceforth abbreviated collectively
as G&a — considered in their papers a series of far more complex and
abstruse problems than the one being summarized herein, for the pur-
poses of this article it is enough to consider a simplified model that still
abstracts all of the essential qualities of what we refer to as a Guddati
solid. This solid is composed of one or more horizontal thin layers of the
same material properties which have all been discretized in the finite
element sense along the vertical direction —and in that direction only.
Thus, G&a replaced the continuous layer of the previous section with a
set of discrete layers, and coupled these to a continuous elastic half-space
underneath. Fig. 1 on the right shows the situation with just one (at first
thin) discrete layer of thickness h. This strategy of discretizing the
layers is commonly referred to as the Thin Layer Method — or TLM for
short — and it offers numerous advantages in the solution of wave
propagation problems in vertically inhomogeneous media, such as
plates or layered soils. Now, instead of using the classical formulation of
the TLM, G&a used a weighted residuals formulation based on the mid-
point integration rule in the context of a linear interpolation function. It
is important to add that the standard TLM formulation that is not based
on the midpoint rule fails to exhibit the remarkable property to be
described. Although the material properties are again the same as those
of the half-space, the discrete layer by itself is now characterized by a
discrete impedance matrix that is given by [1] (compare with Eq. (3)):
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After Eq. (6) is used in lieu of Eq. (3) to form the global impedance
matrix, we are led to the system equation in −ω k space for a single
TLM layer underlain by an elastic half-space and subjected to a load
p k ω( , )͠ 1 applied on the upper surface given by
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where a b, are trivially inferred from Eq. (6). The condensed stiffness is
now (compare with Eq. (5))

= − + −Z a b a Z b( )eq H
1 (8)

Astonishingly, the above expression yields =Z Zeq H for any fre-
quency and any wavenumber, despite the fact that the thin layer is
unable to propagate arbitrarily short waves and does also exhibit
rather clear and well defined dispersion characteristics [6]. In addition,
and perhaps even more remarkably, the condensed impedance is

Fig. 1. : Homogeneous elastic half-space vs. semi-discrete thin layer re-
presentation. Left: Continuous, homogeneous half-space. Right: Half-space
overlain by an arbitrarily thick layer with the same material properties as the
half-space. The layer can be either continuous or discrete.
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