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A B S T R A C T

A new approximate analysis technique is developed to obtain the steady-state response of axially loaded pile
embedded in a homogeneous, isotropic soil, and resting on a rigid base. In the analysis, the soil is modeled as an
axisymmetric linear viscoelastic continuum with frequency independent hysteretic material damping and the
pile is modeled as an elastic Euler rod with a circular cross-section. The soil displacement in the vertical direction
is expressed as a product of separable functions, while the radial displacement is assumed to be zero for
mathematical simplicity; although the effect of the radial displacement is indirectly taken into account by
modifying the soil modulus. The Extended Hamilton's principle in conjunction with the calculus of variations is
used to obtain the differential equations governing pile and soil displacements and the relevant boundary
conditions. The pile and soil displacement equations are solved analytically following an iterative algorithm. The
accuracy of the analysis is ensured by comparing the pile responses obtained from this analysis with those
obtained by other methods available in the literature. A parametric study is performed to investigate the in-
fluence of the pile and soil parameters on the axial dynamic pile-head impedances. The plots developed from the
parametric study can be used in the design.

1. Introduction

Structures like tall buildings, bridges, transmission towers, oil and
gas platforms, and wind turbines often have piles as foundations that
are subjected to dynamic axial loads from machine vibrations, traffic,
and earthquakes. An interest in the analysis of such axially loaded pile
foundations lies in the prediction of appropriate dynamic pile-head
impedance for different frequencies of the harmonic axial load applied
to the pile head. The impedance function is a complex quantity in
which the real part quantifies the axial stiffness of the pile-soil system
and the imaginary part quantifies energy dissipation from both radia-
tion damping and material damping [1,2]. This complex impedance
function can be used to evaluate the dynamic response of the super-
structure by representing the pile-soil system by an axial spring and a
dashpot connected in parallel and characterized by the real and ima-
ginary parts of the impedance functions, respectively.

Several methods are reported in the literature for the dynamic
analysis of axially loaded piles embedded in a homogeneous or layered
soil with each soil layer being isotropic or transversely isotropic, either
overlying a rigid base or floating in a half-space. These studies can be
grouped into four categories based on their rigour and analysis tech-
niques: (i) Winkler based analytical and numerical formulations [3–10],

(ii) rigorous, three-dimensional (3-D) continuum-based formulations
with numerical solutions using finite element (FE), boundary element
(BE) or mixed FE-BE methods [11–19], (iii) rigorous 3-D analytical or
semi-analytical, continuum-based studies [20–28], and (iv) approx-
imate analytical continuum-based studies [29–32]. Of the different
analysis methods available, the Winkler based formulations are the
most popular and widely used by geotechnical engineers because these
approaches are computationally inexpensive and have the ability to
incorporate soil layering and nonlinear soil behavior. However, the
methods based on Winkler approach require parameter calibration for
accurate prediction of pile and superstructure response and either ne-
glect the coupled vibration between the pile-soil or between the soil
layers. The rigorous continuum-based numerical solutions (e.g., finite
element methods) have an advantage over the Winkler type formula-
tions as these methods consider the coupled vibration of the pile and
soil. However, these methods are computationally intensive and ex-
pensive, and may also require the modeling of non-reflecting viscous
boundary conditions to include the effect of radiation damping which
can affect the accuracy of the solution. The rigorous analytical or semi-
analytical continuum-based studies have the advantage of taking into
account the effect of material and radiation damping within the for-
mulation and solution process; however, the mathematics involved are
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often complex, computationally expensive and not quite useful for
routine geotechnical practice. The advantage of the approximate ana-
lytical continuum-based methods is that these methods have the ability
to capture the important aspect of the physics of the problem without
being mathematically too complex and computationally too intensive.

In this paper, a new approximate analytical continuum-based
method for dynamic analysis of an axially loaded single pile with cir-
cular cross-section embedded in a homogeneous, isotropic soil, and
resting on a rigid base is developed. The analysis assumes the pile as a
Euler rod and the soil as an axisymmetric linear viscoelastic continuum
with frequency independent material damping. In the analysis, the
equilibrium of the pile-soil system is considered using the Extended
Hamilton's principle, and the differential equations governing the pile
and soil displacements are obtained using the calculus of variations.
The differential equations of pile and soil displacements are coupled
and the solution is obtained analytically following an iterative algo-
rithm. The accuracy of the analysis technique is validated by comparing
the complex dynamic pile-head impedances obtained from this analysis
with those obtained from an approximate and a rigorous analytical
solution technique available in the literature. A parametric study is
performed to investigate the influence of different pile-soil parameters
on the dynamic axial response of piles. The advantage of the analysis
technique is that it is mathematically simple yet rigorous and the so-
lution can be obtained very quickly.

2. Analysis

2.1. Problem definition

A pile with a circular cross-section modeled as an elastic rod of
radius rp, length Lp, Young's modulus Ep, and density ρp is considered to
be embedded in a soil layer overlying a rigid base (Fig. 1). The soil layer
is modeled as a continuum, that is homogeneous, isotropic, and linear
viscoelastic with hysteretic material damping [33] characterized by
density ρs and complex Lame's constant = +λ λ jξ* (1 2 )s s s and

= +G G jξ* (1 2 )s s s where λs = Esνs/{(1+ νs)(1− 2νs)}, Gs = Es/
{2(1+ νs)}, Es is Young's modulus, νs is the Poisson's ratio, ξs is the

frequency independent damping ratio of soil, and = −j 1 . The pile
head is subjected to a time-harmonic vertical force V(t) = V0ejΩt (see
Fig. 1) where Ω=circular forcing frequency, V0 = forcing amplitude,
and t= time. The objective of the analysis is to obtain the steady-state
pile head displacement and the vertical dynamic pile-head impedances.
In the analysis, no slippage or separation between the pile and the
surrounding soil is considered. A right-handed cylindrical (r-θ-z) co-
ordinate system is chosen for the analysis such that its origin lies at the
center of the pile head and the z-axis coincides with the pile axis which
points downward with the angular distance θ measured clockwise po-
sitive.

2.2. Soil displacement, stress-strain, strain-displacement and strain energy
density

As the problem is axisymmetric, only the radial and vertical dis-
placements ur and uz are non-zero and are functions of r, z, and t. Often,
radial soil displacement is assumed to be small and neglected in the
analysis of axially loaded piles [1,31,32]. The assumption of zero radial
displacement (ur = 0) is made in this analysis as well, and the vertical
soil displacement uz is mathematically expressed as [34,35]

=u r z t w z t ϕ r( , , ) ( , ) ( )z (1)

where w(z,t) =w(z)ejΩt where w(z) is the steady-state axial pile dis-
placement, ϕ(r) is the dimensionless displacement function assumed to
be equal to one at r= rp (this ensures perfect contact between pile and
soil at the pile-soil interface) and equal to zero at r=∞ (this ensures
that soil displacements induced by the loaded pile decrease with in-
crease in radial distance from the pile and eventually becomes zero at
large radial distance).

The stress-strain relationship of the homogeneous, isotropic, and
linear viscoelastic soil for the axisymmetric problem is written as
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The strain-displacement relationship (with contractive strains as-
sumed positive) is obtained by substituting Eq. (1) in the strain vector
on the right-hand side of Eq. (2) and is given by
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Substituting the Eq. (3) in Eq. (2) and on simplification, the strain
energy density σpqεpq/2 (σpq and εpq are soil stress and strain tensors and
summation is implied by the repetition of the indices p and q) of soil is
obtained as
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Eq. (4) is derived with the assumption that soil displacement in the
radial direction is zero. The effect of radial displacement on the re-
sponse of axially loaded pile is small; nevertheless, neglecting the radial
displacement completely introduces artificial restraint in the pile-soil
system. This restraint can be reduced by replacing +λ G( * 2 *)s s on the
right-hand side of Eq. (4) with η G*s s where ηs =2/(1− νs). A similar
approximation was made by Mylonakis [31] and Anoyatis and

Fig. 1. Axially loaded pile embedded in a homogeneous, isotropic, viscoelastic
soil, and resting on a rigid base.

B.K. Gupta, D. Basu Soil Dynamics and Earthquake Engineering 111 (2018) 31–40

32



Download English Version:

https://daneshyari.com/en/article/6770071

Download Persian Version:

https://daneshyari.com/article/6770071

Daneshyari.com

https://daneshyari.com/en/article/6770071
https://daneshyari.com/article/6770071
https://daneshyari.com

