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A B S T R A C T

In this paper, a frequency domain method is proposed for the nonstationary seismic analysis of long-span
structures subjected to random ground motions considering the wave passage effect. Based on the correlation
analysis theory and fast Fourier transform (FFT), a semi-analytical solution is derived for the evolutionary power
spectral density of the random response of long-span structures in the frequency domain. The expression of this
solution indicates that the evolutionary property of nonstationary random responses can be determined com-
pletely by the modulation function of random ground motions, and hence the solution has clear physical in-
terpretations. For slowly varying modulation functions, the FFT can be implemented with a small sampling
frequency, so the present method is very efficient within a given accuracy. In numerical examples, nonstationary
random responses of a long-span cable stayed bridge to random ground motions with the wave passage effect are
studied by the present method, and comparisons are made with those of the pseudo excitation method (PEM) to
verify the present method. Then the accuracy and efficiency of the present method with different sampling
frequencies are compared and discussed. Finally, the influences of the apparent velocity of the seismic waves on
nonstationary random responses are investigated.

1. Introduction

During an earthquake, the energy released at the epicenter transfers
to the ground surface in the form of seismic waves. Since the waves
travel along different paths and through a complex medium, ground
motions caused by the earthquake at different locations will have sig-
nificant differences. Even if the propagation medium is exactly uniform,
there is still a difference in the arrival times of seismic waves at dif-
ferent locations due to their different distances to the epicenter. This
phenomenon is known as the “wave passage effect”. Long-span struc-
tures are generally important facilities, e.g. long-span bridges, dams, or
nuclear power plants. Therefore, their aseismatic capabilities are highly
relevant to public safety. In seismic analysis, long-span structures have
their own special features compared to general building structures. A
major feature is that these structures extend over long distances parallel
to the ground, so their supports undergo different motions during an
earthquake. Hence, the dynamic behaviors of long-span structures with
and without consideration of the wave passage effect have significant
differences [1,2].

The time-history method is widely applied for the random analysis

of long-span structures subjected to an earthquake with spatial varia-
tion [3]. This method is based on stochastic simulation, and response
parameters (mainly mean values and variances) are obtained through
statistical analysis of samples of the random responses. Its main draw-
back, however, is that it has a huge computational cost. Over three
decades, some more efficient methods have been developed. One of
them is an extension of the conventional response spectrum method,
which was initially only feasible for uniform seismic excitation. Der
Kiureghian and Neuenhofer [4] developed a special response spectrum
method for the response of structures to a random earthquake con-
sidering the wave passage effect, incoherence effect and site-response
effect. Yamamura and Tanaka [5] presented an analysis of a suspension
bridge to multi-support seismic excitations. In their work, ground mo-
tions within a group of adjacent supports on continuous soil or rock
were assumed to be uniform and synchronized, while those of different
groups were treated as non-uniform and uncorrelated. Berrah and
Kausel [6] proposed a modified response spectrum method to address
the problem of long-span structures subjected to imperfectly correlated
seismic excitations. However, they did not consider the influence of
quasi-static displacement. Due to the naturally random properties of the
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earthquake, it is more rational to study the seismic response of long-
span structures using random vibration theory. Heredia-Zavoni and
Vanmarcke [7] developed a random vibration method for the seismic
analysis of linear multi-support systems. This method reduced the re-
sponse evaluation to that of a series of linear one degree systems in a
way that fully accounts for the space-time correlation structure of the
ground motion. Lee and Penzien [8] studied random responses of
piping systems under multi-support excitations, obtaining mean and
extreme values of the systems in either the time or the frequency do-
main. Lin et al. [9] simplified a surface-mounted pipeline as an in-
finitely long Bernoulli-Euler beam attached to evenly spaced ground
supports, and solved its random seismic responses. Zanardo et al. [10]
carried out a parametric study of the pounding phenomenon associated
with the seismic response of multi-span simply supported bridges with
base isolation devices. Tubino et al. [11] investigated the influence of
the partial correlation of the seismic ground motion on long-span
structures by introducing suitable equivalent spectra. Lupoi et al. [12]
studied the effects of the spatial variation of ground motion on the
response of bridge structures. The results showed that the spatial var-
iation affects the random response considerably. Lin et al. [13,14]
proposed a random vibration method known as the pseudo-excitation
method (PEM). In the framework of the PEM, the random vibration
analysis was reduced to relatively simple harmonic or transient ana-
lysis, and hence its computation was of high efficiency. The PEM was
also used for seismic responses of long-span structures to ground mo-
tion with spatial variations.

In the research mentioned above, ground motions were always as-
sumed to be stationary random processes. However, some practical
observation results showed that the intensity of the ground motion had
three obvious stages, i.e. increasing, steady and decreasing, during the
duration of the earthquake. Hence it is more rational to assume the
ground motion as a nonstationary random process. Spectral methods,
such as Wigner-Ville spectrum [15], physical spectrum [16], evolu-
tionary spectrum [17,18] etc., can provide a general description of the
energy-frequency properties of nonstationary processes, and thus have
been a focal point of study. The evolutionary power spectral density
(PSD) was widely used in the earthquake engineering for its clear
physical interpretation and relatively simple mathematical derivation
[19,20]. An evolutionary PSD is always defined as the product of a
deterministic uniform or nonuniform modulation function and a sta-
tionary PSD. Based on a spectral representation based simulation al-
gorithm, Deodatis [21] introduced an iterative scheme to generate
seismic ground motion samples at several locations on the ground
surface that were compatible with prescribed response spectra, corre-
lated according to a given coherence function, include the wave passage
effect. Alderucci and Muscolino [22] presented a random vibration
analysis of linear classically damped structural systems subjected to
fully nonstationary multicorrelated excitations and gave a closed-form
solution of the evolutionary PSD of the response. Combining the ex-
perimental data of a multi-support seismic shaking table test and
structural health monitoring findings, Ozer et al. [23] developed a
framework to evaluate random seismic response and estimate reliability
of bridges under multi-support excitations. In the authors’ previous
works [13,24], the PEM and a highly accurate step-by-step integration
method named the Precise Integration Method (PIM) were combined to
solve nonstationary random responses of long-span structures under the
earthquake with consideration of the wave passage effect. Generally, a
time-frequency domain analysis is required to obtain the solution of the
evolutionary PSD when structures are excited by a nonstationary
random excitation. During the time-frequency domain analysis, the
time domain integration is performed at each frequency point. To
achieve accurate results, small time steps are required in the time do-
main integration, especially for a wide band random excitation with
high frequency components. Hence, there will inevitably be a huge
computational cost.

Combining the evolutionary PSD and correlation analysis theory,

this paper develops a frequency domain method for the random vi-
bration analysis of long-span structures subjected to ground motions
with the wave passage effect. This method can be used to obtain the
semi-analytical solution of the evolutionary PSD of random responses
and its computation is very efficient. This paper is structured as follows.
In Section 2, governing equations of long-span structures subjected to
nonuniform earthquake excitation are given. Section 3 presents the
evolutionary PSD model with consideration of the wave passage effect.
By separating the deterministic modulation function from the evolu-
tionary PSD, Section 4 establishes a frequency domain method to obtain
the semi-analytical solution of random responses. In Section 5, a long-
span cable-stayed bridge is adopted as an example structure. The pre-
sent method is applied to random vibration analysis of the bridge and
the results are compared to those of the PEM to verify the present
method. The influences of the wave velocity on random responses are
compared and discussed. Section 6 gives some conclusions.

2. Governing equations of structures under nonuniform seismic
excitation

The governing equations of a long-span structure with N supports
and n degrees of freedom (DOF) subjected to nonuniform seismic ex-
citation can be written as [25]
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where the subscripts “a” and “b” indicate the non-support and support
DOF, respectively; ty ( )a is an n-dimensional vector containing all non-
support displacements; m-dimensional vectors ty ( )b and tp ( )b represent
the enforced support displacements and forces at all supports, respec-
tively; the ×n n matrices Maa, Caa and Kaa [Mbb, Cbb and Kbb] are the
mass, damping and stiffness matrices associated with ty ( )a [ ty ( )b ]; the
superscript “T” denotes transposition. Note that when the lumped mass
matrix approximation is adopted, Mab is null.

In order to solve Eq. (1), the absolute displacement ty ( )a can be
decomposed into the following two parts [25]:
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in which ty ( )s and ty ( )d are the quasi-static and dynamic displacement
vectors, respectively, which satisfy the following equations:
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Expanding the first row of Eq. (3) gives

= − −t ty K K y( ) ( )s aa ab b
1 (4)

Assuming that the damping force is proportional to the dynamic
relative velocity tẏ ( )d instead of tẏ ( )a , the first row of Eq. (1) can be
rewritten as

+ + = −t t t tM y C y K y M K K ÿ ( ) ̇ ( ) ( ) ̈ ( )aa d aa d aa d aa aa ab b
1�� �� (5)

In the random vibration analysis of long-span structures under
nonuniform seismic excitation, seismic waves are always assumed to
travel along a certain direction. For long-span structures with N sup-
ports, the accelerations of ground motions at supports in the travelling
direction can be expressed as the following N -dimensional vector

= …t u t u t u tü ( ) { ̈ ( ), ̈ ( ), , ̈ ( )}b N1 2
T (6)

At the same time, tÿ ( )b in Eq. (5) can also be expressed as the fol-
lowing m-dimensional ground acceleration vector
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