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A B S T R A C T

Phenomenological models used in seismic structural analyses are often based on parameters without explicit
physical meaning, which must be calibrated by fitting experimental responses. Parameter calibration, as an
inverse problem, may suffer from ill-posedness, and thus the results are always to be critically examined before
accepting them. In this paper, a comprehensive methodology, comprising repeated optimisation runs, local and
global sensitivity analysis and simplified uncertainty analysis is described with the aim of providing some
guidelines to assess the calibration results. As exemplary case study, the calibration of a phenomenological
model for steel members by means of a series of experimental tests is presented. The experimental response of
nominally identical beams tested under monotonic, cyclic and pseudo-dynamic loading were used in the pro-
cedure. The main findings of the work indicate that the optimisation process based on Genetic Algorithms is able
to find optimal solutions in terms of fidelity to the experimental tests: However, being the problem ill-posed, the
same level of fitting may be attained by solutions characterised by different model parameters. Local and global
sensitivity analyses may help assess the identifiability of the parameters, while a-posteriori uncertainty analysis
provides an estimation of the uncertainty in the prediction. It is shown that increasing the number of calibration
tests may reduce the ill-conditioning of the problem, and thus a multi-objective approach is strongly re-
commended. Finally, a novel procedure recently developed based on tolerance-based Pareto dominance is shown
to give similar results to those provided by computationally expensive sensitivity analyses at the computational
cost of a single calibration analysis.

1. Introduction

Engineering predictions of structural seismic response are based on
mathematical representation of the physical behaviour of mechanical
systems. To be accurate, a mathematical model should represent the
structural behaviour either in the elastic or nonlinear branch, as well as
in monotonic or cyclic conditions. While good approximations could in
principle be obtained by using detailed Finite Element discretisation of
the differential equations governing the problem [1–4], this approach is
not feasible when large-scale structures are to be studied, because of the
computational cost needed and the impracticability of the definition of
the single phenomena occurring in the components. For these reasons,
it is generally preferred to apply a phenomenological approach, in which
simplified numerical models are used to represent a behavioural re-
sponse regardless of the underlying physics. Consider for instance
flexural strength degradation occurring in a steel member under cyclic
loading, which is well-known to be due to local buckling of compressed

parts in the cross-section [5]: a mechanics-based approach would
consider modelling the initial imperfection in the component and its
effect on the local stress distribution and the stability of equilibrium. On
the contrary, a phenomenological approach recognises the phenom-
enon at the larger scale (strength degradation) and tries to define a
mathematical model relating this to some global parameters, as dis-
sipated plastic energy or ductility. This change of perspective has two
important consequences. Firstly, the different scale of description al-
lows the analyst to reduce the computational burden of the analysis yet
accounting for all important nonlinear effects on the structure. Sec-
ondly, the model becomes independent from the physics of the pro-
blem, and can represent responses at very different scale (from stress-
strain relationship of a material to base shear-top displacement of a
building) without conceptual differences.

An example of phenomenological approach in structural analysis is
the concentrated-plasticity strategy, according to which nonlinear be-
haviour of members (typically beams in frame structures) is supposed to
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manifest in limited regions known a priori [6,7], modelled as zero- or
finite-length nonlinear elements. Different formulations for the non-
linear elements are provided by the models by Takeda [8], Bouc and
Wen [9,10], Ramberg and Osgood [11], Richard and Abbott [12],
Dowell, Seible and Wilson [13], Sivaselvan and Reinhorn [14], Ibarra,
Medina and Krawinkler [15].

As most of these models rely on some parameters whose physical
meaning is not immediately recognisable, model calibration is usually
based on curve fitting of experimental data coming from purposely
designed tests [16]. Hence, the calibration problem becomes an opti-
misation problem in which a function of the mismatch between ex-
perimental data and numerical counterparts computed from a model
with a given choice of parameters is minimised. The main issue in this
approach is that due to various model and data errors and diverse
sensitivity of the model parameters, several parameter combinations
may give similar levels of fidelity to the response taken into con-
sideration, yet providing completely different quality in the prediction
of the response under other loading conditions. This issue was raised for
instance in [17] with regards to a hysteretic model for steel members
calibrated against data coming from cyclic tests following ordinary
protocols. It was also suggested therein that the addition of further
information, i.e. tests to fit, in the framework of multi-objective opti-
misation could be beneficial for increasing the robustness of the results.
As those results show that calibration of phenomenological models
based on curve fitting is far from being a routine task, it is re-
commended that a critical assessment of the results should answer the
following questions:

1. Is the optimisation procedure robust?
2. What is the level of confidence that can be assigned to the calibrated

parameters?
3. How does the uncertainty of the calibrated parameters relate to the

response prediction?

The answer to such fundamental questions involves careful con-
sideration of the optimisation algorithm, sensitivity analysis (SA)
methodologies and relates to the general area of calibration and vali-
dation [18–21]. In [22] a framework for quantifying the uncertainty in
the calibration of mechanical models and how it propagates in the
prediction is proposed in the context of Bayesian updating. In [23] Ma
et al. show how the use of SA may be useful in determining the im-
portance (and thus the identifiability) of the parameters of the Bouc-
Wen model. The use of SA in the determining the relative importance of
input parameters for a model is now widespread in environmental
modelling [24], statistical sciences [25,26] and chemical modelling
[27], while in structural engineering it appears to be slightly less
common.

In this work, following the calibration methodology proposed in
[17], a comprehensive assessment procedure comprising repeated op-
timisation runs, local and global sensitivity analysis and simplified
uncertainty analysis will be described and applied to a case study in-
volving the calibration of a structural phenomenological model for
beam plastic zones. Even though the numerical results are strictly valid
for the application considered only, the main motivation for this work is
suggesting general guidelines for performing accurate calibration ana-
lyses and promoting good practice in the field of structural model ca-
libration. Moreover, a novel method for calibration accounting for
tolerance in the objective satisfaction is finally shown to provide results
similar to those given by SA at a cost of a single optimisation run.

2. Overview of the calibration procedure and assessment strategy

2.1. The calibration problem

Calibration (or parameter identification) of a numerical model
means finding the set of parameters ∼p such that the computed response

given by the simulation of a test yc(p) is as close as possible to the
experimental response yexp. This implies solving the optimisation pro-
blem:

=∼
∈

p y y pωargmin ( , ( ))
p P

exp c (1)

where =y y p pω ω( , ( )) ( )exp c is a suitable discrepancy function mea-
suring the inconsistency between the experimental and computed
quantities, and P the set of all possible parameter combinations. One of
the simplest and most widespread formulation for the discrepancy
function, adopted in this work, is:

= −p y y pω ( ) 1
ω

( )exp c
ref (2)

where ∙ represents the Euclidean norm of a vector and = yω expref is
a scaling factor needed to make ω non-dimensional.

When NT calibration tests are performed, the optimisation problem
(1) is replaced by:
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where pω ( )i represents the discrepancy value of the i-th test.
In the context of multi-objective optimisation, the concept of Pareto

optimality replaces the usual notion of optimality [28]. In a mini-
misation problem, a solution p1 is said to dominate a solution p2 if and
only if:
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A solution is referred to as Pareto optimal if it is not dominated by
any other solution. The ensemble of all Pareto optimal solutions in the
objective space is said Pareto Front PF, and it represents the general
solution of (3). As a typical configuration of the Pareto Front for
minimisation problems (in two dimensions) is L-shaped (Fig. 1), if all
objectives are correctly scaled (as, for instance, by means of formula-
tion (2)) a unique compromise solution pcompr may be extracted from
the Pareto Front, according to the rule:

= −
∈

p ω p ωargmin ( )compr PF
utopia

p (5)

where = …ω p p pω ω( ) [ ( ), , ( )]N
T

1 T and ωutopia is the vector of the
minimum discrepancies. This rule corresponds to selecting from PF the
nearest solution to the utopia point where all objectives have minimum
value (Fig. 1).

The optimisation problem (1) or (3) may be solved by using dif-
ferent algorithms (gradient-based, meta-heuristics). Genetic Algorithms

Fig. 1. Typical Pareto Front in two-objective minimisation problems and selection of the
compromise solution.
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