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A B S T R A C T

The problem of the dynamic response of an infinite beam resting on a Winkler foundation to a load moving on its
surface with variable speed is solved here analytically/numerically under conditions of plane strain. The beam is
linearly elastic with viscous damping and obeys the theory of Bernoulli-Euler. The elastic foundation is char-
acterized by its spring constant and hysteretic damping coefficient. The moving point load has an amplitude
harmonically varying with time and moves with constant acceleration or deceleration along the top beam
surface. The problem is solved by first applying the Fourier transform with respect to the horizontal coordinate x
and the Laplace transform with respect to time t to reduce the governing equation of motion of the beam to an
algebraic one, which is solved analytically. The transformed beam deflection solution is inverted numerically
after some simplifying analytical manipulations to produce the time domain beam response. Parametric studies
are conducted in order to assess the effects of the various parameters on the response of the beam, especially
those of acceleration and deceleration. Comparisons with the case of a finite beam are also done in order to
assess the effect of the beam length.

1. Introduction

The simplest possible model for a rigid pavement under moving
vehicle loads is that of an elastic beam or plate on Winkler elastic
foundation [1]. The beam or plate can be finite or infinite, thin or thick,
with or without viscous damping and the Winkler foundation can
consist of vertical and/or horizontal springs and zero or nonzero
damping of the viscous or hysteretic type. One can mention here the
works of Thompson [2], Achenbach and Sun [3], Sun [4,5], Kim and
Roesset [6], Basu and Kameswara Rao [7] and Yu and Yuan [8], dealing
with an infinite beam and the one by Lee [9] dealing with a finite beam.

All the existing works utilizing the above models are restricted to
the case of loads moving with constant speed. Consideration of constant
speed though, does not fully reflects reality, since vehicle loads usually
move with speed varying with time.

Very recently, Beskou and Muho [10], were able to study the effect
of variable speed on the response of a finite beam on a Winkler foun-
dation to moving loads analytically. The problem was solved in [10] by
modal superposition and computation of the resulting Duhamel's in-
tegral numerically. This method is applicable only in cases the beam is
finite with well-defined boundary conditions at its two ends so as to
express its lateral deflection as a superposition of its modal shapes. In
cases where the beam is of infinite extend, this method is not

applicable. The method of using a moving coordinate system to elim-
inate the time and reduce the problem to an ordinary differential
equation which can be easily solved (e.g., in [2,3,7]), is restricted to the
case of loads moving with constant speed.

In the present work, the problem of an infinite beam resting on a
Winkler foundation and subjected to a load moving with variable speed
on its top surface is solved analytically/numerically by extending the
method of Yu and Yuan [8] from the constant speed case to the variable
speed case.

The method employs Fourier and Laplace transforms with respect to
the horizontal coordinate x and the time t, respectively, to reduce the
governing equation of motion of the beam to an algebraic one, which is
easily solved analytically. Then the transformed beam deflection solu-
tion is inverted numerically after some simplifying analytical manip-
ulations to produce the time domain beam response. This method is
similar to the one employing a double Fourier transform with respect to
both x and t described in Kim and Roesset [6] but leads to a much
simpler transformed solution than the one of [6]. Thus, the present
method requires the numerical evaluation of simpler integrals than in
[6] where the double inverse fast Fourier transform is used.

Damping is considered for both the beam and the foundation, while
the point load maybe constant or varying harmonically with time.
Extensive parametric studies are performed to assess the various
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problem parameters on the response. Comparisons with the case of the
finite beam of [10] with very large length are also made in the fra-
mework of validation studies.

2. Statement and solution of the problem

Consider an infinite Bernoulli-Euler beam resting on a Winkler
elastic foundation and subjected to a concentrated load P(x,t) moving
on its surface with a variable speed V(t), as shown in Fig. 1. The
equation of lateral motion of this beam has the form

′ + + + =′′′EIw x t kw x t cw x t mw x t P x t( , ) ( , ) ̇ ( , ) ¨ ( , ) ( , ) (1)

where w = w(x,t) is the lateral deflection of the beam, EI is the flexural
rigidity of the beam, k is the foundation spring constant, c = cb + cf is
the damping coefficient with cb corresponding to the beam and cf to the
foundation, m is the beam mass per unit length, primes and overdots
denote differentiation with respect to the horizontal coordinate x and
time t, respectively and P(x,t) is the moving concentrated (point) load.
This load can be expressed as

= −P x t P δ x x( , ) ( )o o (2)

where Po is its constant magnitude and xo is expressed in terms of the
initial velocity Vo and the constant acceleration (with + sign) or de-
celeration (with – sign) α as

= ±x V at1
2o ot

2
(3)

Initial conditions are assumed to be zero and w and its derivatives
with respect to x tend to zero as x approaches ±∞.

Following the approach in [8], the Fourier transform with respect to
x and the Laplace transform with respect to t are applied on Eq. (1) to
reduce this partial differential equation into an algebraic one, which
can be easily solved analytically. These two transforms for a function f
(x,t) are defined as
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−∞

∞
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π
f x t e dx( , ) 1

2
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∫=∼ ∞ −f x s f x t e dt( , ) ( , ) st
0 (5)

Application of Fourier transform with respect to x on Eq. (1) and use
of Eq. (2) result in

+ + + = −EIξ w ξ t kw ξ t cw ξ t mw ξ t P e( , ) ( , ) ̇ ( , ) ¨ ( , ) o
iξx4 0 (6)

Application of Laplace transform with respect to t on Eq. (6)

Fig. 1. Infinite beam on Winkler foundation with moving load.

Fig. 2. Beam displacement under the load versus distance along the x axis for zero
damping.

Table 1
Dimensionless maximum deflection w *105 of an infinite beam on elastic foundation under
moving accelerating load for various parameters.

V0 (m/s) a (m/s2) kf ( MPa) c (kNs/m) Infinite
Beam (1)

Finite
Beam l =
50m (2)

[(1)-
(2)]/1
(%)

0 0 – – – –
6 40 500 0.826504 0.772461 6.54%

1500 0.748733 0.736073 1.69%
120 500 0.364954 0.313203 14.18%

1500 0.358306 0.310275 13.41%
12 40 500 0.818648 0.769446 6.01%

1500 0.693399 0.703747 −1.49%
120 500 0.365607 0.313301 14.31%

1500 0.350829 0.307532 12.34%
20 0 40 500 0.828043 0.771379 6.84%

1500 0.765709 0.723657 5.49%
120 500 0.365825 0.31324 14.37%

1500 0.359809 0.309321 14.03%
6 40 500 0.819550 0.768431 6.24%

1500 0.706256 0.693172 1.85%
120 500 0.366001 0.313331 14.39%

1500 0.351924 0.306605 12.88%
12 40 500 0.810274 0.765529 5.52%

1500 0.660133 0.667097 −1.05%
120 500 0.366068 0.313404 14.39%

1500 0.343859 0.303978 11.60%
40 0 40 500 0.810215 0.759587 6.25%

1500 0.649872 0.622355 4.23%
120 500 0.365272 0.313583 14.15%

1500 0.343529 0.298929 12.98%
6 40 500 0.804898 0.756814 5.97%

1500 0.614450 0.604659 1.59%
120 500 0.362642 0.313679 13.50%

1500 0.338370 0.296573 12.35%
12 40 500 0.793924 0.754102 5.02%

1500 0.583276 0.588641 −0.92%
120 500 0.365961 0.313759 14.26%

1500 0.330183 0.294285 10.87%

Table 2
Dimensionless maximum midspan deflection w *105 of infinite beam on elastic foundation
under moving decelerating load for various parameters.

V (m/s) a (m/s2) kf (MPa) c (kNs/m) One axle (1) Finite
Beam l =
50m (2)

[(1)-
(2)]/1
(%)

20 −6 40 500 0.832028 0.774418 6.92%
1500 0.799478 0.760616 4.86%

120 500 0.365800 0.313152 14.39%
1500 0.363572 0.312144 14.15%

−12 40 500 0.831555 – –
1500 0.804197

120 500 0.366011 – –
1500 0.363311

40 −6 40 500 0.818187 0.762516 6.80%
1500 0.692825 0.642180 7.31%

120 500 0.365432 0.313504 14.21%
1500 0.350562 0.301334 14.04%

−12 40 500 0.823309 0.765363 7.04%
1500 0.720596 0.664572 7.77%

120 500 0.364849 0.313420 14.10%
1500 0.355099 0.303884 14.42%

E.V. Muho, N.D. Beskou Soil Dynamics and Earthquake Engineering 109 (2018) 150–153

151



Download	English	Version:

https://daneshyari.com/en/article/6770610

Download	Persian	Version:

https://daneshyari.com/article/6770610

Daneshyari.com

https://daneshyari.com/en/article/6770610
https://daneshyari.com/article/6770610
https://daneshyari.com/

