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A B S T R A C T

A 2.5D FEM (finite element method) is used to investigate the effects of soil parameters of transversely isotropic
(cross anisotropic) saturated soil on ground vibrations and excess pore water pressures induced by moving train
loads. The governing equations of transversely isotropic saturated soil are derived from the Boit's theory in
frequency domain by applying the Fourier transform with respect to time, and 2.5D FE model is then established
using Galerkin method. Correctness of the proposed model is validated with published data. Numerical results
illustrate that the decrement of vibration amplitude and excess pore water pressure caused by the increment of
vertical elastic modulus is more significant than that of the horizontal direction. Poisson ratios in both directions
have little effect on ground vibrations, while an increase in horizontal Poisson ratio results in a significant
increment in excess pore water pressure.

1. Introduction

Railway train has been a major mode of public transportation,
especially in China. With the rapid development of high-speed railways,
the environmental vibration caused by moving trains is becoming more
widely concerned. Natural soils widely distributed in coastal area
usually is exhibited the characteristic of cross-anisotropy or transverse
isotropy due to sedimentation or consolidation. Therefore, researchers
should pay more attention on the vibrations of transversely isotropic
(cross anisotropic) ground.

Many experimental methods are adopted to study the property of
transversely isotropic soil. For example, Kuwano et al. [1] used bender
elements and trigger-accelerometers to measure elastic wave velocities
transmitted vertically in triaxial specimens of sand, gravel and glass
beads. Nishimura [2] adopted high-precision triaxial apparatus to study
cross-anisotropic deformation characteristics of natural sedimentary
clays. Other researchers studied the analytical solution of wave pro-
pagation in transversely isotropic ground. Papargyri-Beskou et al. [3]
studied the wave propagation in gradient elastic solids and structures.
Zymnis et al. [4] presented closed-form analytical solution for esti-
mating far-field ground deformations caused by shallow tunneling in a
linear elastic soil mass with cross-anisotropic stiffness properties. Ah-
madi and Eskandari [5] analyzed the vibrations of rigid circular disk

and strip embedded in a transversely isotropic solid. Ogden and Singh
[6] investigated the effect of rotation and initial stress on the propa-
gation of waves. Recently, Ai and Ren [7] analyzed the vibration of a
transversely isotropic solid subject to a moving loading using the ana-
lytical element method.

Apart from the experimental and analytical studies, numerical
method is becoming a promising method in study of this problem with
its feasibility for dealing with actual problems with irregular geometry.
Abedrrahim [8] presented a coupling method of finite and hierarchical
infinite elements to solve a non-homogeneous cross-anisotropic half-
space subjected to a non-uniform circular loading. These methods
showed good performance in predicting vibration in non-homogenous
soils, however, such models are rather expensive in calculation time
and memory space. To improve the computational efficiency and en-
sure the accuracy of computational model, a 2.5D FEM was used for
solving the ground vibrations induced by a moving train [9–12]. The
2.5D FEM conducts Fourier transform along the train moving direction,
and solves the three dimension problem with a two dimensional FE
grids which is dispersed on section perpendicular to the train moving
direction. It is firstly used in seismic analysis, and then employed to
solve dynamic response under train loads by Yang and his collaborators
[9,10]. Nevertheless, published results using 2.5 D FEM are all in
homogenous or layered elastic and saturated soils, study on ground
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borne vibration under moving train loads in transversely isotropic sa-
turated soil is not yet reported.

In view of this, based on Biot theory and the Galerkin method, this
paper establishes a 2.5D FEM of transversely isotropic saturated soil
together with flow viscoelastic boundary conditions, to predict ground
vibrations in such soils subjected to train loads; and the effects of me-
chanical parameters of transversely isotropic saturated soil on the
ground vibration and excess pore water pressure are studied in detail.

2. Equations of u-p format for 2.5D FEM

The finite element model is the same as that in Ref. [11], track and
ground are simplified as Euler-Bernoulli beam and transversely iso-
tropic saturated porous medium, respectively. The train moves along
the track with a velocity c, the expression of train loads can be seen in
Ref. [11]. The material and geometric properties are assumed to be
constant along the train moving direction. Coordinates system of the
finite element model is the same as that in Ref. [11], where x is the train
moving direction, y is the direction perpendicular to track, and z is the
vertical direction, the track center is the origin of coordinates. In ad-
dition, the height of embankment is set to be 1.0 m, and underground
water level is at the ground surface.

According to Biot's theory of wave propagation in fluid-saturated
porous medium, the dynamic motion equations of a fully saturated
poroelastic medium can be expressed as follows [11]:
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in which σij is the stress of porous medium and Fi is the body force of the
solid skeleton; ρ and ρf denote the bulk density of the porous medium
and the density of the pore fluid, = − +ρ ρ n nρ(1 )s f , in which ρs is the
density of the solid skeleton and n is the porosity of the porous medium;

= −W n w u( )i i i is the average displacement of the pore fluid relative to
the solid skeleton, in which wi and ui denote the infiltration displace-
ments of pore fluid and the average displacement of solid skeleton,
respectively; p is the excess pore water pressure and g is the acceleration
of gravity; Kf and Kd are the bulk modulus of pore fluid and the per-
meability of the porous medium, respectively; (′) indicates differentia-
tion with respect to time t.

The Fourier transformation of function u x y z t( , , , ) with respect to x-
coordinate and time t is defined by:
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The corresponding inverse transforms with respect to εx and ω is
given by:
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where ω and εx represent circular frequency and the horizontal wave-
number corresponding to x-direction, respectively.

Based on the generalized Hooke's law, stress-strain relationship and
effective stress principle of soil, the relationship between stresses and
displacements of soil are given as:
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where u, v and w are respectively displacements of soil skeleton in x, y
and z directions; Cij(i, j = 1, 2, 3, 4, 6) are mechanical parameters of

transversely isotropic soil, which can be expressed in horizontal and
vertical elastic moduli, horizontal and vertical Poisson's ratio and the
shear modulus. Elastic modulus in complex form is introduced to ac-
count for the material damping.

In order to eliminate time derivatives in Eq. (3), the Fourier trans-
formation with respect to time is performed on Eq. (3). As a result, the
equation is transformed into the frequency domain. By using the deri-
vative nature of Fourier transform, the following equation can be ob-
tained:
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in which = −F nK iωρ gn ω K ρ/( )d f d f
2 , variables with a bar above in-

dicate the components in frequency domain.
Substituting Eqs. (6) and (7) into Eq. (1), and then performing

Fourier transformation with respect to time, the balance equations of
mechanics parameters in frequency domain are given by:
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Similarly, Fourier transformation with respect to time is performed
on Eq. (2). Then by substituting the results obtained into Eq. (7), the
balance equation of fluid in frequency domain is expressed as:
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Stress boundary conditions and flow boundary condition in fre-
quency domain of the FEM model are given as:
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where fi(i = x, y, z) are components of external forces in x, y, z di-
rections; l, m, n are directions cosine, respectively; q is the flow of pore
water; vn is flow velocity of pore water.

Combining the constitutive equation and applying the Galerkin
method to Eqs. (8)–(11), and then incorporating the developed shape
function and performing wave-number expansion on the resulting
equation in x-direction, the 2.5D FEM governing equations in wave-
number domain and frequency domain can be derived by conventional
finite element method, which are given by:
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where Kup is stiffness matrix; Mup is mass matrix; ″Qup, ′Qup and Qup are
solid and fluid coupling matrixes; Hup and Sup are Jacobian matrixes;
f up

s and f up
s are equivalent node load vectors; u is node displacement

matrix; variables with '~' above indicate the component in wave-
number domain.

Artificial boundary has a non-negligible influence on the calculation
accuracy. Referring to Gao et al. [11], this paper adopted a 2.5D vis-
coelastic dynamic artificial boundary to model the wave propagation in
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