
Contents lists available at ScienceDirect

Soil Dynamics and Earthquake Engineering

journal homepage: www.elsevier.com/locate/soildyn

Shear wave velocity and soil type microzonation using neural networks and
geographic information system

Mohammad Motalleb Nejada, Mohammad Sadegh Momenib, Kalehiwot Nega Manahiloha,⁎

a University of Delaware, Civil and Environmental Engineering, 301 DuPont Hall, Newark, DE 19711, United States
b ZTI Consulting Engineers, 32 2nd Kousar, Sattarkhan Street, Tehran, Iran

A R T I C L E I N F O

Keywords:
Geographic information system (GIS)
Neural networks (NNs)
Shear wave velocity (Vs)
In-situ testing
Unified soil classification system (USCS)
Microzonation
Standard Penetration Test (SPT)
Atterberg limits

A B S T R A C T

Frequent casualties and massive infrastructure damages are strong indicators of the need for dynamic site
characterization and systematic evaluation of a site's sustainability against hazards. Microzonation is one of the
most popular techniques in assessing a site's hazard potential. Improving conventional macrozonation maps and
generating detailed microzonation is a crucial step towards preparedness for hazardous events and their miti-
gation. In most geoscience studies, the direct measurement of parameters imposes a huge cost on projects. On
one hand, field tests are expensive, time-consuming, and require specific high-level expertise. Laboratory
methods, on the other hand, are faced with difficulties in perfect sampling. These limitations foster the need for
the development of new numerical techniques that correlate simple-accessible data with parameters that can be
used as inputs for site characterization. In this paper, a microzonation algorithm that combines neural networks
(NNs) and geographic information system (GIS) is developed. In the field, standard penetration and downhole
tests are conducted. Atterberg limit test and sieve analysis are performed on soil specimens retrieved during
field-testing. The field and laboratory data are used as inputs, in the integrated NNs-GIS algorithm, for devel-
oping the microzonation of shear wave velocity and soil type of a selected site. The algorithm is equipped with
the ability to automatically update the microzonation maps upon addition of new data.

1. Introduction

Casualties and massive infrastructure destruction are great in-
dicators of the need for systematic characterization of a site's sustain-
ability against natural disasters. Microzonation has been known as one
of the most accepted tools in assessing soil failure potentials. Seismic
microzonation is a generic name for the process of subdividing a
seismic-prone area into zones based on appropriately selected geo-
technical properties. This process can be done by systematically esti-
mating the response of soil layers to earthquake excitations. The result
of a microzonation process is a geographical map—generated in terms
of suitable geotechnical and geophysical parameters—illuminating
specific geological characteristics of a site, such as soil type, or the
potential of different zones of a site for geotechnical failures, such as
ground shaking, liquefaction, landslide, tsunami, and flooding. One
example parameter that can be used in microzonation is the small-strain
shear modulus (also called maximum shear modulus, Gmax). Gmax can be
correlated to the deformation potential of a given site against seismic
actions. This parameter has been discovered to have a direct correlation
with the small-strain shear wave velocity of a soil [1]. In other words,

shear wave velocity in low strains can be used as a unique and reliable
parameter that can be used in microzonation maps.

Making improvements on the traditional macrozonation maps and
generating detailed microzonation maps is a crucial step towards pre-
paredness for future hazardous events. In the last few decades, efforts
were made to perform microzonation on different earthquake-prone
areas to be used for construction and design purposes. Fäh et al. [2]
carried out a detailed microzonation of the city of Basel to perform a
numerical modelling of expected ground motions during earthquake
events. Tuladhar et al. [3] performed a seismic microzonation for the
city of Bangkok by using micro-tremor observations. Anbazhagan and
Sitharam [4] mapped the average shear wave velocity for the Bangalore
region in India. They also proposed an empirical relationship between
the Standard Penetration Test blow count (SPT-N) and shear wave ve-
locity. Vipin et al. [5] carried out a performance-based liquefaction
potential analysis based on SPT data acquired from Bangalore, India.
Cox et al. [6] presented a seismic site classification microzonation of
the city of Port-au-Prince based on shear wave velocity of the soil and
provided a code-based classification scheme for the city. Murvosh et al.
[7] carried out shear wave velocity profiling in complex ground to
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enhance the existing microzonation of Las Vegas. Kalinina and Am-
mosov [8] studied the applicability of multichannel analysis of surface
waves to address the solutions for microzonation problems.

For a good microzonation, it is not only important to obtain reliable
data from field measurements but also to identify and implement a
robust technique to optimize the input-output relationship. Most of the
statistical methods require a significant volume of data to produce re-
liable results. Direct measurement of most geotechnical parameters
imposes huge costs on projects. Field tests are time-consuming and need
specific expertise. Laboratory methods, on the other hand, are faced
with difficulties from imperfect sampling. These limitations necessitate
the development of numerical techniques that correlate easily acces-
sible data with parameters that require extensive effort. In light of this,
Artificial Intelligence (AI) integrated with GIS can be used to model the
seismic hazard susceptibility of a site.

Fuzzy Networks, metaheuristic algorithms, and most importantly,
neural networks (NNs) can all be categorized under the field of AI. NNs
are designed to approximate complicated non-linear correlations be-
tween input and output layers of a specific problem while using a small
fraction of data for training purposes [9–11]. Furthermore, NNs are
designed to eliminate the complicated statistical variables that exist in
conventional statistical methods [12]. The integration of NNs with GIS
has recently been tried for various problems [13]. Li and Yeh [14] used
this approach to simulate multiple land use changes in southern China.
Pijanowski et al. [15] proposed a model to evaluate the land transfor-
mation. Lee et al. [12] used an integrated GIS and NNs to study the
landslide susceptibility in the area of Yongin in Korea. Pradhan and Lee
[16] analyzed the regional landslide hazard utilizing optical remote
sensing data. Yoo and Kim [17] predicted the tunneling performance
required in routine tunnel design works. Pradhan et al. [18] proposed a
GIS-based neural network model to obtain landslide susceptibility
mapping for risk analysis. Ho et al. [19] proposed a methodology to
assess the water leakage and prioritize the order of pipe replacement in
a water distribution network.

In this study, NNs have been used to correlate easily obtainable
geotechnical parameters with parameters that govern the seismic po-
tential of a soil. The resulting correlation has been implemented in
generating microzonation maps. Python coding has been implemented
to develop a dynamic system capable of automatically improving mi-
crozonation maps as additional data is acquired and inserted. The
proposed algorithm has been applied for the microzonation of Urmia
City, which is located in the northeastern part of Iran. In the succeeding
sections of the paper, the design and implementation of an integrated
system that performs geotechnical microzonation of a site will be pre-
sented.

2. Methods and materials

2.1. Neural networks (NNs)

Neural networks are known to be the main and inspiring branch of
artificial intelligence. It is not an overstatement to claim that the word
intelligence is an appropriate attribute for neural networks, since the
NNs algorithms are based on simplified mathematical models for the
interconnected electro-chemical transmitting neurons, what we call it
"Brain" [20]. NNs are designed to extract non-linear correlations be-
tween effective variables by examining a large set of responses. Neural
networks are primarily trained with a large data set. NNs are able to
provide accurate output for a data set if a proper training plan has been
implemented. Correctly, designed NNs will have three main parts: the
transfer function, the network structure, and the learning law. These
parts are defined separately based on the type of the defined problem
[21].

NNs consist of an interaction between several interconnected nodes,
called artificial neurons. These neurons exchange messages with each
other. These neurons could be located in several different layers. The

structure of designed NNs includes three different types of layers: (1)
input layer (2) hidden layer(s) and (3) output layer. Each structure has
one input layer and one output layer. Hidden layers are intermediate
layers defined between the input and output layers where the active
signals are transmitted between layers. The number of hidden layers
and nodes per layer are set based on trial and error by the network's
designer. The connections between neurons have numeric weights that
can be adjusted based on experience. This feature helps the NNs learn
from experience. Each weighted neuron connection is activated by a
transform function in a given layer. This process is repeated until the
output neurons are all activated. The error of the NNs is defined as the
difference between the NNs output and the given observation. The
weights are then changed until the error is minimized. The minimiza-
tion of the error can be performed with different types of optimization
techniques. Metaheuristic methods such as the harmony search algo-
rithm have been used in several engineering problems [22,23]. Least
squares methods can also be used to minimize the error.

From a number of different types of NNs, a feedforward network is
selected here. Such a network uses backpropagation (BP) technique—a
gradient descent algorithm in which the network weights are moved
along the negative of the gradient of the performance function. In this
study, the Levenberg-Marquardt (LM) algorithm [24] is employed to
optimize the weight of networks. This algorithm has the capability of
solving non-linear least squares problems. For the basic BP algorithm,
the weights of the network are adjusted in the direction that the rate of
descent for the performance function is highest. The weight of the
network for each iteration is calculated from the following expression:

= −+ αW W Gk k k k1 (1)

where Wk is a vector of current weights, Gk is the current gradient, and
αk is the learning rate.

For fast optimization, the gradient can be replaced by the Hessian
matrix of the performance index at the current values of the weights

−A( )k
1 . Since a huge computational effort is required to obtain the

Hessian matrix for feedforward neural networks, the LM algorithm has
been designed to approach a second-order training speed without the
need to calculate the Hessian matrix [25]. For the performance function
with the form of a sum of squares, the Hessian matrix can be approxi-
mated by:

=H J JT (2)

= JG ET (3)

where J is the Jacobian matrix that contains the first derivatives of the
network errors with respect to the weights, and E is a vector of network
errors.

The Jacobian matrix can be computed through a standard back-
propagation technique [25] which bypasses the difficulty of computing
the Hessian matrix. The LM algorithm uses this approximation to the
Hessian matrix in the following Newton-like update:

= − ++
−μJ J I JW W [ ] Ek k1

T 1 T (4)

The correction factor μ is a counterweight that guarantees the re-
duction of the performance function. Any increase or decrease in per-
formance function is accompanied by mutual increase or decrease in
the correction factor. This way, the performance function is always
reduced at each iteration of the algorithm [26].

Overfitting is the most common problem that may occur during the
training process. This problem occurs when the obtained error for the
training set of the data is very small but that of the testing data is very
large. The network has memorized the training examples, but it has not
learned to generalize to new situations (i.e., testing data). Regulation is
a technique that prevents overfitting and improves network general-
ization. It involves modifying the performance function, which is nor-
mally chosen to be the sum of squares of the network errors in the
training set.
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