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A B S T R A C T

The modal characteristics of structures are usually computed disregarding any interaction with the soil. This
paper presents a finite element-perfectly matched layers model to compute the modal characteristics of 2D and
3D coupled soil-structure systems while taking fully into account dynamic soil-structure interaction. The
methodology can facilitate the interpretation of experimentally identified modal characteristics by assessing the
importance of dynamic soil-structure interaction.

1. Introduction

The modal characteristics of structures are usually computed with
finite element models disregarding any interaction with the soil. These
modal characteristics can differ from the ones identified by means of
experimental modal analysis [1]. Finite element updating is used to
reduce the discrepancy between numerically predicted and experi-
mentally identified modal characteristics by appropriately calibrating
model parameters [2]. Dynamic soil-structure interaction (SSI) affects
the modal characteristics due to the more flexible support conditions
and the dissipation of energy in the soil [3]. Disregarding dynamic SSI
might result in poor correspondence between numerical and experi-
mental modal characteristics. Effects from dynamic SSI might be erro-
neously lumped to structural parameters during finite element up-
dating, leading to model errors adversely affecting accurate prediction
of structural vibration. Dynamic SSI can be accounted for by using
coupled finite element-boundary element (FE-BE) formulations [4] or
finite element formulations in conjunction with absorbing boundary
conditions (ABC) [5] or perfectly matched layers (PML) [6]. In these
models, the influence of the semi-infinite extent of the soil is explicitly
taken into account by allowing the radiation of elastodynamic waves.

The computation of the modal characteristics of these coupled soil-
structure models requires the solution of non-linear eigenvalue pro-
blems which are more challenging to solve than the generalized ei-
genvalue problem. This paper presents a FE-PML model facilitating the
computation of the modal characteristics of 2D and 3D coupled soil-

structure systems. These results can support the interpretation of ex-
perimentally identified modal characteristics by quantifying the influ-
ence of dynamic SSI. Ultimately, the FE-PML model can be used in vi-
bration based finite element updating where both soil and structural
parameters are calibrated.

2. FE-PML model

Fig. 1 shows the FE-PML model used to compute the modal char-
acteristics of coupled soil-structure systems. The structure Ωb is partially
embedded in a stratified soil Ωs

e. The computational domain Ω is com-
posed by the generalized structure = ∪Ω Ω Ωr b s

e modeled with FE and
the PML buffer zone Ωp simulating the truncated unbounded soil at Σrp.

The virtual work equation for the generalized structure Ωr in the
frequency domain is:

 ̂ ̂ ̂ ̂∫ ∫ ∫ ∫+ = +Ω ω ρ Ω Γ ΓLv C Lu v u v t v t( ) ( )d (i ) d ^ d ^ d
Ω Ω Γ Σ

n nT 2 T T T
r r r

N rp

(1)

where u is the displacement vector, ̂ ̂ ̂ ̂= =ϵ γ γ γ Lu{ϵ̂ , ϵ̂ , ϵ̂ , , , }xx yy zz xy yz zx
T

is the strain vector, L is a matrix containing differential operators,
 ̂̂ ̂ ̂ ̂ ̂ ̂= =σ ϵσ σ σ σ σ σ C{ , , , , , }xx yy zz xy yz zx

T is the stress vector collecting the
elements of the symmetric stress tensor σij, C is the constitutive matrix,

ρ is the density, t̂
n
are applied tractions with n the unit outward normal

vector and ̂v is a kinematically admissible virtual displacement field on
Ω. A hat above a variable denotes its representation in the frequency
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domain. The last integral on the right hand-side is the interaction term
on Σrp with the PML buffer zone Ωp where the traction equilibrium

+ =
−

t t 0^ ^n n
r p holds.

Complex coordinate stretching is applied inside the PML buffer zone
Ωp in order to artificially attenuate the elastodynamic waves [6,7]. For
a coordinate s, representing the x, y or z coordinate, the stretched co-
ordinate s͠ is defined as:

̂∫ ∫ ∫= + = + +s s λ s s s α s s
ω

α s s( )d ( )d 1
i

( )d͠
s

s

s

s

s

s
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t

o

t
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t

(2)

where so and st delimit the origin and the termination of the PML buffer
zone in the direction of the coordinate s and ̂λ s( )s is the stretch function
with α s( )0s and α s( )1s polynomial functions controlling the attenuation
of the evanescent and propagating waves inside the PML buffer zone
[8]. Introducing the complex coordinate stretching (2), the equilibrium
equation of the PML buffer zone Ωp is:
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T T T 2

p (3)

where the differential operators Lx , Ly and Lz are defined as:
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Similarly, the kinematic equation of the PML buffer zone in stretched
coordinates, using ̂ =ϵ σD with D the compliance matrix, is:

 ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂= + +σλ λ λ λ λ λ λ λ λ ΩD L L L u( ) inx y z y z x x z y x y z p (5)

The mixed formulation of Fathi et al. [9] is used for the modeling of
the PML buffer zone Ωp where both displacements and stresses are re-
tained as independent variables. The equilibrium Eq. (3) and the ki-
nematic Eq. (5) are treated independently. The integral form of the

equilibrium Eq. (3) is obtained by considering a kinematically ad-
missible virtual displacement field ̂v on Ω, integrating by parts the
terms depending on σ and applying the divergence theorem:
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where the integral on the right hand-side is the interaction term with
the generalized structure Ωr. The integral form of the kinematic Eq. (5)
is obtained by considering a virtual stress field ̂τ on Ω:

 ̂ ̂̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂∫ ∫+ + − =τ τ σλ λ λ λ λ λ Ω λ λ λ ΩL L L u D( ) d d 0
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The dynamic SSI problem is formulated by taking into account the
equilibrium of tractions on the interface Σrp. Adding Eqs. (1) and (6)
yields:
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The combined integral Eqs. (7) and (8) describe the dynamic re-
sponse of the coupled soil-structure system. A standard Galerkin pro-
cedure is followed in the FE implementation. The displacement field u
and the virtual displacement field ̂v are approximated as  ≃u N uu and

̂ ̂≃v N vu with Nu a matrix containing globally defined shape functions.
Similarly, the stress field σ and the virtual stress field ̂τ are approxi-
mated as  ≃σ σNσ and ̂ ̂≃τ τNσ . Since Eqs. (7) and (8) hold for any
kinematically admissible virtual displacement field ̂v and virtual stress
field ̂τ , the following system of equations is obtained:
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where the block matrices are defined as follows:
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The system of Eqs. (9) is factorized into a rational form. In order to
improve the conditioning of the system and preserve its symmetry,
auxiliary stress variables = − σωβŝ (i ) 1 are introduced and the last row
of the system is multiplied by ωβi where the scaling factor β depends on
the stiffness and inertial parameters of the FE-PML model:
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The polynomial products ̂ ̂ωλ λi y z, ̂ ̂ωλ λi x z, ̂ ̂ωλ λi x y and ̂ ̂ ̂ω λ λ λ(i ) x y z
2 that

now appear in Eq. (13) can be written as:
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Fig. 1. FE-PML model.
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