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Damping reduction factor plays a central role both in scientific literature and seismic codes, but still now
proposed formulations show a quite large scatter. The main goal of the present work is to explore a new defi-
nition of the damping reduction factor. The concept of stochastic response spectrum is adopted in order to
predict the earthquake response of a linear SDoF system, on the basis of the random vibration theory for non-

stationary process. The peak of the response of a SDoF system under a non-stationary stochastic process is used to
define the stochastic displacement spectrum. The damping reduction factor is thus evaluated as the ratio be-
tween the maximum displacement of systems with a given damping and a conventional one subject to the same

earthquake.

1. Introduction

Seismic design and assessment of ordinary structures are generally
based on response spectrum analyses in which a 5% damping ratio is
adopted. Actually two types of damping can be recognized in structures,
one of which comes from structures themselves and the other from the
added energy dissipation devices. Within this classification, high-
damping elastic response spectra should be applied in the case of
structures equipped with seismic isolation or energy dissipation sys-
tems. In this context the Damping Reduction Factor (DRF) represents an
effective tool for design purposes in order to estimate response spectra
characterized by damping ratio different from 5%. Namely the DRF is a
scaling factor applied in response spectrum analyses to translate spec-
tral ordinates at 5% damping into ordinates corresponding to other
values of damping ratio.

In the last decades several studies for the formulation of the DRF
have been carried out by many researchers, the outcomes of which have
been adopted by the main seismic codes [1-7]. Until now researchers
were mainly oriented to estimate the DRF by the observation of the
effects of viscous damping on the maximum displacement response of
elastic SDOF systems subjected to artificial or natural earthquakes
[1,2,4,6,7]. In addition to its obvious dependence on damping and
period, recent investigations, based on real acquisitions, showed the
dependence of the scaling factor on seismological parameters such as
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magnitude, distance from the source and local site conditions [6]. In a
recent paper, Palermo et al. [8] used a stochastic approach with sta-
tionary input to provide insight into the observed trends and to identify
the key parameters which govern the damping reduction factor. Prac-
tically all the aforementioned studies, except for the latter one, are
based on statistical analyses of the time-history response of SDOF
damped systems subjected to real earthquake records. Nevertheless,
despite the great quantity of studies dedicated to the problem, an evi-
dent understanding of the observed trends is still missing.

The study herein proposed deals with a stochastic approach to ob-
tain the DRF and to identify the fundamental parameters which govern
it. The adopted methodology is based on a stochastic approach with
non-stationary input, contrarily to the study from Palermo et al. [8]
dealing with a stationary input. Moreover, in the presented study, a
formulation based on the peak theory of stochastic processes is utilized
and the concept of Seismic Spectrum in stochastic meaning is in-
troduced. The DRF is defined as the ratio between the displacement
spectrum of a system with a given value of the damping ratio and the
displacement spectrum of a system with a conventional value of the
damping ratio (equal to 5%) subject to the same earthquake. In this
framework, the peak theory represents the most rigorous way to
translate the concept of spectral value, i.e. of the maximum value of the
system time response, in stochastic meaning.
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2. Description of the model and of the seismic ground motion
2.1. Damping reduction factor

The equation of motion for a linear-viscous SDOF system subjected
to a seismic ground acceleration action Xg (t) can be written as:

Xo () + 25,00X0(t) + w3 Xo(t) = =X, (1) @

where X, is the system-ground relative displacement, £, the damping
ratio and w, the system natural frequency, defined as follows:
[k c

wy =, — and {, = ——,

0=\ = S T @
k and m being the stiffness and the mass of the system, respectively.

Displacement spectrum and Pseudo-acceleration spectrum for the

system are defined as:

Sq = 1Xo(t) lmax displacementspectrum; PS,

= w? S, pseudoaccelerationspectrum;

3

The Damping Reduction Factor (DRF) 7 is introduced to get an
approximate estimate of the high damping elastic response spectra from
their 5% counterpart, adopting the following equations:

Sa = 1Sa,e=s%; PSq = NPSq =59, ()

where Sy ¢—sq and PS, ¢—sq are the elastic displacement and pseudo-ac-
celeration response spectra for damping ratio equal to 5%, while S; and
PS, are the corresponding quantities for damping ratios & greater than
5%. The same reduction factor 5 is used for both displacement and
pseudo-acceleration response spectra, since they are mutually related
through the relationship given by Eq. (3).

On the basis of Eq. (4), if the DRF is known, the high-damped re-
sponse spectra can be evaluated from the response spectra with
damping ratio equal to 5%.

2.2. Earthquake ground motion modelling and site soil conditions

In this study, a stochastic-based approach is used to evaluate the
DRF, assuming a non-stationary model for the seismic action. More in
detail, the seismic acceleration X, is modeled as a uniformly modulated
non-stationary stochastic process, obtained by multiplying a time
modulation function ¢(t) for a stationary process. An extensively ap-
plied stochastic approach was proposed by Clough and Penzien [9] who
considered a linear fourth order filter, obtained from a series of two
linear oscillators, forced by a modulated white noise process. Accord-
ingly, ground acceleration X, (t) can be expressed as:

X (1) = —? X () — 26w X (1) + 0, X, + 2§pprp(t)
X.(0) + 0?2 X () + 28w X (1) = 0, X, + 2§pcopo(t)

X0 + 2§pcopo(t) + 02Xy, = —p(OW (1) )
where: X,,(¢) is the response of the first filter, having frequency w, and
damping coefficient £,; X (t)is the response of the second filter char-
acterized by frequency w. and damping ratio &; W(t) is the white noise
stochastic process, whose constant bilateral Power Spectral Density
function is Sy. Finally, ¢(t) is the modulation function [10]; the function
proposed by Jennings et al. [11] is herein adopted, by assuming { = 5s,
L =12s, § =04 (see Eq. (11) in [12]). By varying the Kanai-Tajimi
parameters and the parameters of the modulation function, it is possible
to represent all site conditions, earthquake durations, magnitudes,
epicentral distances, etc., i.e. properly selecting the parameters in-
volved in the stochastic model of the earthquake [13].

2.3. Stochastic-based DRF

Let us consider a SDoF freedom subject to a seismic motion modeled
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by the non-stationary Clough and Penzien (CP) stochastic process.

Expressing Eq. (5) in the state-space, the motion equation of the system

becomes:

Z(t) = AZ(t)+F(t). (6)
In Eq. (6) Z is the state-space vector and F is the force vector, given

by:

Z=Xo X, Xy , X0, Xe, X,); F=(0,0,0,0,0, —p®)W(D)"

@)

while A is the state matrix:

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1
A=|-w¢ & - 3 =250 + 2w, — 2wpé,

0 —w +w 0 = 2w, + 2wp§,

0 0 -—w 0 0 — 2w 8)

The stochastic response of the system excited by the non-stationary
modulated CP process can be obtained by solving the following matrix
Lyapunov differential equation [12,14]:

R(t) = AR(t) + R(H))AT + B(¢) 9

where R(t) = (ZZ") is the covariance matrix and B(t) is a square matrix
with all zero elements except for the last one, equal to 21Se@(t)2. The
solution of Eq. (9) can be performed by adopting different numerical
approaches [15-17].

3. Peak response and stochastic response spectrum evaluation

A seismic response spectrum is defined as the plot of the maximum
response (displacement, acceleration) of a SDoF system to a recorded
earthquake versus its natural period for any assigned value of structural
damping. In stochastic meaning, in the same way, the seismic response
spectrum is the plot of a stochastic evaluation of the maximum system
response to a stochastic model of the ground motion versus the natural
period for any assigned value of structural damping.

In this study, in order to obtain the DRF by Eq. (4), the displacement
spectrum is evaluated in stochastic terms by mean of the peak theory of
stochastic process [18,19]. More in detail, the maximum displacement
Xo™® is defined as the system displacement which is not exceeded with
a given probability P*. Consequently, the central matter now is to
evaluate this maximum displacement that in a mathematical formula-
tion is the displacement threshold b that will not be exceeded with a
probability P} during the system lifetime [13]. By applying the proce-
dure described in [19], the spectrum is obtained by varying the natural
period of the SDoF. The maximum displacement such that the prob-
ability that X(t) will leave the domain [— XZ,,,+ XZ,] is equal to an
assigned value P* is defined as XL (t). This inverse problem can be
approached by a numerical procedure. It starts with a first tentative
value of the maximum displacement X2, and iterates i-times until the
following stop condition is verified:

IP(+XLia, 1) — PH <€ (10)

e being a small enough value. At the end of this iterative procedure
the maximum displacement can be assumed as X2 = X} ... After the
maximum displacement has been evaluated, a stochastic measure of the
displacement spectrum can be obtained and finally the DRF 7 is
achieved by Eq. (4). In the following analyses P* is assumed equal to
1073

4. Results and discussion

In this section, some sensitivity analyses are carried out in order to
evaluate the influence of the different involved parameters on DRF.
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