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a b s t r a c t

In this paper, the analytical layer-element method is utilized to analyze the plane strain dynamic
response of a transversely isotropic multilayered half-plane due to a moving load. We assume that the
studied system moves synchronously with the moving load, then the moving load relative to the moving
system is considered to be motionless. Therefore, the vertical stress and the vertical displacement under
the moving load need not update for the variation of the load position. Based on the governing equations
of motion in the moving system, the analytical layer-element solutions for a finite layer and a half-plane
in the Fourier transform domain are derived by using the algebraic operations in Ref. [7]. The global
matrix of the problem can be obtained by assembling the analytical layer-elements of all layers. The
corresponding solution in the frequency domain is further recovered by the inverse Fourier transform.
Several examples are given to confirm the accuracy of the proposed method and to illustrate the
influence of material properties.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamic response of the moving load is widely applied in
practical engineering like railroads, highways, bridges and run-
ways. Many models and methods of analysis for the problem have
been proposed, and Beskou and Theodorakopoulos [1] gave a
comprehensive review on the dynamic response of homogenous
or layered half-space subjected to a moving load. Apart from the
character of layering, soils like as London clay [2] also take on the
phenomenon of transverse isotropy. Rajapakse and Wang [3]
derived Green's functions for a transversely isotropic elastic half-
space subjected to time-harmonic excitations. Shodja and Eskan-
dari [4] studied the axisymmetric time-harmonic response of a
transversely isotropic substrate-coating system. Khojasteh et al.
[5] obtained the three-dimensional dynamic Green's functions for
a transversely isotropic multilayered half-space. Recently, Lin [6]
presented a numerical approach to calculate the Green's function
for an anisotropic multilayered half-space by employing the
Fourier transform and the precise integration method.

From the above literature review, few researches consider a
transversely isotropic multilayered half-plane subjected to a mov-
ing load. In this paper, the dynamic response of a transversely
isotropic multilayered half-plane subjected to a moving load is
solved by using the analytical layer-element method [7]. For the
velocity of the moving load in practical engineering is generally in
the subsonic range, only the subsonic case is studied here. Based on
the governing equations of motion in the moving system, the global
stiffness matrix in the transformed domain for a transversely iso-
tropic multilayered half-plane due to a moving load is derived by
using the algebraic operations in Ref. [7] as reference. The corre-
sponding solution in the frequency domain is further recovered by
the inverse Fourier transform. At last, several numerical examples
are performed to confirm the accuracy of present method and to
discuss the influence of material properties.

2. The governing equations of motion in the moving coordi-
nate system

As shown in Fig. 1, let X and Z be Cartesian coordinates fixed in
the medium occupying the half-space ZZ0. Consider a load of
intensity q and width 2a acting along the line Z ¼ 0 moves in the
positive X direction with a constant speed v for a long time.
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In plane-strain conditions, the governing equations of motion in
the absence of body forces for a transversely isotropic material are
[7]
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where uX and uZ represent the displacement components in the X
and Z directions, respectively; ρ denotes the mass density; t is the
time. In addition,c11 ¼ λnð1�nμ2

vhÞ, c12 ¼ λnðμhþnμ2
vhÞ, c13 ¼

λnμvhð1þμhÞ, c33 ¼ λð1�μ2
hÞ, c44 ¼ Gv, n¼ Eh=Ev and λ¼ Ev=

½ð1þμhÞð1�μh�2nμ2
vhÞ�, in which Eh, Ev and Gv represent the

horizontal Young's modulus, vertical Young's modulus and shear
modulus normal to the half-plane, respectively, and μvh and μh are
the Poisson's ratios expressing lateral strain as a result of stress
acting parallel and normally to the plane, respectively.

To replace the fixed system ðX; ZÞ, now we introduce a moving
system ðx; zÞ which moves along with the moving load q at the
same time (see Fig. 1). It is defined that ux and uz are the dis-
placement components along x and z axis in the moving coordi-
nate system, hence,
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Substituting Eqs. (2) into Eqs. (1) leads to the governing
equations of motion for the transient response of an elastic body in
the moving coordinate system as follows:
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The result is time-invariant in the steady-state conditions,
because the excitation is a constant force. Consequently, the partial
differentiations with respect to t in Eqs. (3) tend to be zero
(∂=∂t ¼ 0, ∂2=∂t2 ¼ 0). Thus, the governing equations of motion for
the steady-state response of an elastic body in the moving

coordinate system can be written as follows:
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3. The analytical layer-element solutions for a multilayered
half-plane in the moving system

To deal with the problem of a transversely isotropic multi-
layered half-plane subjected to a time-harmonic load, Ai and
Zhang [7] took a Fourier transform to its governing equations of
motion, and led to the following equations:
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where ω is the circular frequency of the time-harmonic load.
Similarly, in order to solve the partial differential equations (4),

we may apply the same Fourier transform in Ref. [7] to reduce
them into ordinary differential equations as follows:
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According to Eqs. (5) and (6), if ρv2ξ2in Eqs. (6) is replaced by
ρω2, the two equations will be the same. Therefore, the algebraic
operations in Ref. [7] can be used as reference to get the analytical
layer-element solutions for a finite layer and a half-pane in the
moving system.

After a series of derivation process similar to Ref. [7], the ana-
lytical layer-element solutions for a finite layer in the moving
coordinate system is established as
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where V ξ; z
� �¼ τxz ξ; z

� �
;σz ξ; z
� �� �T,U ξ; z

� �¼ ux ξ; z
� �
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addition, Kðξ; zÞ is a symmetric matrix of order 4� 4, which is the
analytical layer-element associating the displacements and stres-
ses of z¼ 0 and arbitrary depth z in the Fourier transformed
domain shown in Fig. 2. The specific elements of the matrix are
consistent with Appendix A in Ref. [7] after ρω2 being replaced by
ρv2ξ2.

Besides, the relationship between displacements and stresses
of a half-plane in view of the regularity condition for z-1 can
also be established:

�V ξ; z
� �� �¼Khðξ; zÞ Uðξ; zÞ� � ð8Þ

Fig. 1. Steadily moving load on the surface of transversely isotropic half-plane.

Fig. 2. Stresses and displacements of a single layer with a finite thickness.
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