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a b s t r a c t

Rocks can be modeled in a continuum framework as fissured, poroelastic materials, i.e., materials with
two degrees of porosity, one due to the fissures and another one due to the pores. The governing
equations of motion of fissured poroelastic rocks established by Beskos are rederived here by establishing
a variational statement which also provides the boundary conditions of the problem. This is accom-
plished by considering strain, dissipation and kinetic energies as well as the work of external forces. The
above statement is also derived here by employing the method of weighted residuals.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The determination of the quasi-static or dynamic behavior of
fluid-saturated poroelastic media, such as soils and rocks, is an
important problem in many practical geomechanics applications.
The most widely used theory for fluid-saturated poroelastic soils is
that of Biot [1,2]. This theory, which has been successfully applied
for the solution of a plethora of practical problems of fluid-
saturated poroelastic soils [3], cannot be successfully used for
problems involving fluid-saturated poroelastic rocks, which are
generally characterized not only by pores but also by fissures.

In fluid-saturated poroelastic rocks one has fissures separating
the rock mass in porous blocks. The permeability of the fissures is
much higher than that of the porous blocks. On the other hand, the
porosity of the porous blocks is much higher than that of the fis-
sures. Using a double porosity model, Wilson and Aifantis [4] and
Beskos and Aifantis [5] conducted analytical studies and Khaled
et al. [6] numerical studies (using the finite element method –

FEM) on the consolidation of fluid-saturated, fissured,
poroelastic rocks.

Other double porosity models for fluid-saturated, fissured,
poroelastic rocks were developed and used for consolidation
analysis with the aid of analytical or FEMs by Valliappan and
Khalili-Naghadeh [7], Elsworth and Bai [8], Bai et al. [9], Auriault
and Boutin [10,11], Berryman and Wang [12], Lewallen and Wang
[13] and Bai et al. [14].

Inclusion of inertia effects in quasi-static (consolidation) double
porosity models enables one to study wave propagation problems
in fluid-saturated, fissured, poroelastic rocks. Here one can

mention the works of Beskos [15], Beskos et al. [16,17], Vgeno-
poulou and Beskos [18], Auriault and Boutin [19], Berryman and
Wang [20] and Auriault [21].

Most of the aforementioned works on quasi-static (consolida-
tion) problems and all on dynamic problems involving double
porosity models for rocks are analytical. However, realistic
boundary value problems can only be solved by numerical meth-
ods, such as the FEM. Finite elements have been used for the
solution of consolidation problems of fluid-saturated, fissured
poroelastic rocks in [6,7,9] and [14]. In all these cases the method
of weighted residuals-Galerkin has been employed for the for-
mulation of the problem, in accordance with the work of Zien-
kiewicz and Shiomi [22] for the dynamics of single porosity media.
Another approach could be to construct and employ a variational
statement like those used by Ghaboussi and Wilson [23,24] for the
quasi-static and dynamic behavior of single porosity media.

In general, variational statements for a set of governing partial
differential equations can recover those governing equations and
also provide all possible combinations of boundary conditions,
which are not easy to establish in coupled fluid-deformation
problems. In addition, they can also be used for formulating the
finite element equations in matrix form. Finally, variational
statements can be successfully used to prove uniqueness, as it was
done in Beskos and Aifantis [5] for the case of consolidation of
double porosity media. The method of weighted residuals or
Galerkin approach, as it is known in FEMs, has the advantage of
deriving the matrix finite element equations in an easier way than
variational statements. On the other hand, one can recover varia-
tional statements with the aid of the method of weighted residuals
as demonstrated in Papargyri-Beskou et al. [25] for gradient elastic
beams under static or dynamic loads.

In the present paper, the governing equations of motion for
fluid-saturated, fissured, poroelastic rocks developed by Beskos
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[15] are recovered by establishing a variational statement on the
basis of strain, kinetic and dissipation energies of a double porosity
medium. This variational statement also serves to establish all
possible boundary conditions. In addition, the variational state-
ment is derived with the aid of the method of weighted residuals
as applied to the governing equations of motion in [15].

2. Dynamic behavior of fissured poroelastic rocks

The governing equations of motion of fissured poroelastic
rocks, as obtained by Beskos [15] on the basis of the theory of
mixtures, have the form

ðλþμÞuj;jiþμui;jj ¼ �v1Q
1
i �v2Q

2
i þρS €ui; i; j; k¼ 1;2;3 ð1Þ

�βaPa;i ¼ vaQ
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In the above, ui are the displacement components of the solid
elastic skeleton, the subscript or superscript α stands for the fluid
in the fissures (α¼1) and the pores (α¼2), Pa denotes fluid
pressure, Q

a
i stands for the relative specific discharge of the form

Q
a
i ¼ nað _ua

i � _uiÞ ¼ _wa
i ð4Þ

with nα and ua
i denoting porosity and fluid displacement in the

fissures (α¼1) and pores (α¼2), va is defined as

va ¼ βa
v
ka

ð5Þ

where v is the dynamic viscosity of the fluid, ka the permeability
and βa coefficients expressing the effect of the solid deformability
on the fluid flow, ρs and ρa are relative densities of the solid and
fluid, respectively, of the form

ρs ¼ ρs½1�ðn1�n2Þ�; ρa ¼ naρf ð6Þ

with ρs and ρf being the mass densities of solid and fluid,
respectively, and λ and μ are the Lamé constants of the elastic
solid, aa measure the compressibilities of fissures (α¼1) and pores
(α¼2) filled with fluid and κ measures the transfer of fluid from
the pores to the fissures.

Furthermore, summation convention is assumed over repeated
indices, commas indicate differentiation with respect to space
variables and overdots denote differentiation with respect to time
t. Eqs. (1)–(3) form of system of 3þ2�3þ2¼11 partial differential
equations with 11 unknowns, i.e., three ui, three Q

1
i , three Q

2
i , P1

and P2. It should be noted that the coefficient of _ui;i in Eq. (3) is
here just βa and not βaþna as it is in [15] in order to be compatible
with the same equation in references [5,6], which, even though
dealing with the quasi static case and not the dynamic one, are
also utilized here.

3. Variational principle

Consider the energy functional L given by

L¼UþD�K�W ð7Þ

where U is the strain energy of the solid and the fluids in fissures
and pores, D is the dissipation energy due to the friction of the
fluid flows, K is the kinetic energy of the solid and the fluid in
fissures and pores and W is the work of external forces at the
boundary S of the solid–fluid body of volume V. Following [5], one

has that
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where s¼ ∂=∂t and εij and σs
ij are the strain and stress tensors of

the elastic solid, respectively, of the form

εij ¼
1
2
ðui;jþuj;iÞ; σs

ij ¼ λuk;kδijþμðui;jþuj;iÞ ð10Þ

with the δij being the Kronecker's delta. The kinetik energy K can
be expressed as
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while the work of the external forces as
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where Sti is the total traction vector and sai the fluid pressure vector
of the form

Sti ¼ σt
ijηj ¼ σs

ij�
X2
a ¼ 1

βapa

 !
ηj ð13Þ

sai ¼ � paδijηj ð14Þ
with ηj being the unit normal vector on the boundary surface S.

Employing Hamilton's principle, the variation of L as given by
Eqs. (7)–(9), (11) and (12) takes the form
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or after the use of Eq. (10) and Green's theorem
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where Ssi ¼ σs
ijηj.

At this point, the constitutive assumption

wa
i;i ¼ �βauk;k�aaPa�ð�1Þaκ1

s
ðP2�P1Þ a¼ 1;2 ð17Þ
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