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a b s t r a c t

In this paper, a novel coupled pore-scale model of pore-fluid interacting with discrete particles is
presented for modeling liquefaction of saturated granular soil. A microscale idealization of the solid
phase is achieved using the discrete element method (DEM) while the fluid phase is modeled at a pore-
scale using the lattice Boltzmann method (LBM). The fluid forces applied on the particles are calculated
based on the momentum exchange between the fluid and particles. The presented model is based on a
first principles formulation in which pore-pressure develops due to actual changes in pore space as
particles' rearrangement occurs during shaking. The proposed approach is used to model the response of
a saturated soil deposit subjected to low and large amplitude seismic excitations. Results of conducted
simulations show that at low amplitude shaking, the input motion propagates following the theory of
wave propagation in elastic solids. The deposit response to the strong input motion indicates that
liquefaction took place and it was due to reduction in void space during shaking that led to buildup in
pore-fluid pressure. Soil liquefaction was associated with soil stiffness degradation and significant loss of
interparticle contacts. Simulation results also indicate that the level of shaking-induced shear strains and
associated volumetric strains play a major role in the onset of liquefaction and the rate of pore-pressure
buildup.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Earthquake excitations are induced by a fault rupture at large
depths which generates seismic waves with elaborate patterns of
frequency content and amplitude. Near the ground surface, satu-
rated loose granular deposits experience a decrease in void space
and a rise in pore-fluid pressure during dynamic excitations which
leads to a degradation in soil stiffness and strength properties and
ultimately liquefaction. Liquefaction is an instability phenomenon
that is generally associated with a site loss of bearing capacity and
flow failure along with lateral displacements and excessive
settlements.

The coupled (solid–fluid) response of saturated granular soils is
commonly modeled using continuum formulations derived based
on phenomenological considerations (e.g., the mixture or the
Biot theories) (e.g., [1,2]) or homogenization of the micromecha-
nical equations of motion [3]. These formulations require a
constitutive model to describe the relationship between effective
stresses and strains of the solid phase. For liquefaction problems,
several constitutive models based on the plasticity theory have
been introduced that include the cap models [4,5], the multiyield

plasticity model [6,7], the bounding surface plasticity models [8],
and the fuzzy-set plasticity models [9], among others (e.g., [10–15]).
Most of these models have been calibrated based on the undrained
cyclic triaxial test or simple shear test results. The finite element
method is typically used to discretize the field equations (e.g.,
[1,2,16–19]).

An alternative over a fully continuum description of the
saturated granular medium is to adopt a multiscale model that
accounts for the discontinuous nature of the granular soil by
modeling it at a microscale while keeping the fluid at a continuum
scale (e.g., [20–23]). In this technique, the fluid–particle interac-
tion term that idealizes momentum transfer is calculated using
semiempirical relations that rely on averaged solid phase quan-
tities (e.g., porosity and effective diameter). While a continuum
description of the fluid appears to be satisfactory, averaging of the
solid phase properties may mask important pore-scale level
phenomena and may misrepresent the actual interaction between
the pore-fluid and the solid particles.

A fundamental idealization of saturated granular soils would
combine a model that accounts for the discontinuous nature of
granular soils, and a pore-scale representation of the fluid filling
the void space between the solid particles. The discrete element
method [24] has proven to be very efficient in modeling granular
materials as a collection of discrete particles and thus accounting
for intergrain discontinuity. There are several techniques that are
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capable of obtaining the fluid flow in the pores between particles.
Patankar et al. [25,26] used a finite element technique based on
moving unstructured grids to study the lift force on one particle
and multiple particles. Zhu et al. [27] implemented the Smoothed
Particle Hydrodynamics (SPH) method to investigate the flow
through stationary porous media. SPH is a fully Lagrangian
technique in which the solution is obtained without a grid
(meshless). In this technique, the fluid velocity and pressure can
be obtained in the pores. Potapov et al. [28] and Cleary et al. [29]
combined SPH and DEM to simulate liquid–solid flows. The lattice
Boltzmann method (LBM) is another pore-scale numerical techni-
que to simulate fluid flow governed by Navier–Stokes equations.
LBM is based on the microscopic kinetic equation for the fluid
particle distribution function. The macroscopic quantities are then
obtained through momentum integration of the distribution
function. LBM models the fluid flow at a pore-scale and the fluid
characteristics can be obtained at the soil pores. Moreover, the
forces in LBM are calculated based on the stresses applied to the
particles or the momentum the fluid exchanges with the particles
through a nonslip boundary condition at the fluid–particle inter-
face. LBM is especially useful for modeling complicated boundary
conditions and multiphase interfaces (e.g., [30–32]).

In this paper, we introduce results of a novel model of soil
liquefaction that couples a pore-scale idealization of pore-fluid
with a discrete description of solid particles. That is, a microscale
representation of the solid phase is achieved using DEM while the
fluid phase is modeled at a pore-scale using LBM. The fluid forces
applied on the particles are calculated based on the momentum
exchange between the fluid and particles. The proposed approach
is used to model the response of a saturated soil deposit subjected
to seismic excitation. Results of conducted simulations suggest
that liquefaction is due to reduction in void space during shaking
that leads to buildup in pore-fluid pressure and is associated with
soil stiffness degradation and significant loss of interparticle
contacts.

2. Coupled fluid–particle model

A fully coupled model is presented herein to simulate a
saturated granular deposit subjected to a dynamic base excitation.
For the solid particles and fluid mixture, the fluid equations as well
as the momentum equations for each particle are solved using an
explicit time integration scheme. The fluid is idealized at pore-
scale using the lattice Boltzmann method, and fluid variables such
as velocity and pressure are obtained at fixed grid points. A
nonslip fluid boundary condition is applied at the particle surface
to maintain compatibility between the fluid phase and solid phase.
The fluid hydromechanical forces are calculated based on the
momentum exchange between the fluid and the particles. These
forces are then applied on the particles and the equations of
motion of each particle in the system are solved to provide new
particle position. The following subsections provide details of
model components.

2.1. Lattice Boltzmann formulation

In LBM, the fluid is modeled as packets of particles that move
about a regular lattice or grid. This grid is defined by boundary and
initial conditions. The fluid motion is solved over two phases for
each time step. These phases are the streaming phase, where the
fluid packets have a discrete set of velocities such that packets will
move or stream from one lattice point to another, and the collision
phase, where the fluid packets interact with each other. Collision
and streaming of the fluid packets occur at the lattice points
according to specific relationships that conserve mass and

momentum in such a way that Navier–Stokes equations are
recovered.

One of the problems in solving the Boltzmann equation is the
complicated nature of the collision part. One practical way to
overcome such difficulty is to use Bhatnager–Gross–Krook (BGK)
approximation. The BGK method replaces the full collision term
with the linearized BGK single time relaxation model [33]. The
LBM–BGK equation can be written as

f iðxþeit; tþδtÞ ¼ f iðx; tÞ�
δt
τ
ðf iðx; tÞ� f eqi ðx; tÞÞ ð1Þ

where f iðx; tÞ is the fluid particle density distribution function with
velocity ei at a lattice point located at position x for a given time t,
τ is the relaxation time, and f eqi ðx; tÞ is the equilibrium density
distribution function for the fluid. Eq. (1) comprises a collision
phase (the second term on the right-hand side), and a streaming
phase that moves the distribution calculated on the right-hand
side to the neighboring node indicated on the left, xþeit; tþδt.
In this paper, the three-dimensional D3Q15 lattice cell shown in
Fig. 1 is used to model the fluid. The velocity set of the D3Q15
lattice cell is presented in a matrix form as

ei ¼ C

0 1 �1 0 0 0 0 1 �1 1 �1 1 �1 1 �1
0 0 0 1 �1 0 0 1 �1 1 �1 �1 1 �1 1
0 0 0 0 0 1 �1 1 �1 �1 1 1 �1 �1 1

2
64

3
75

ð2Þ

in which C is the lattice speed and is given by

C ¼ δx
δt

ð3Þ

where δx is the lattice spacing, and δt is the time step. The
equilibrium density distribution function for the fluid is

f eqi ¼ ρwi 1þ 3

C2ei � uþ
9

2C4ðei � uÞ
2� 3

2C2u � u
� �

ð4Þ

where wi is a weighting factor, ρ is the fluid density, and u is the
fluid velocity vector. The weighting factors for the (D3Q15) lattice
cell are

wi ¼
2=9; i¼ 0:
1=9; i¼ 1�6:
1=72; i¼ 7�14:

8><
>: ð5Þ

The macroscopic fluid variables at a lattice point, density ρ,
velocity u , and pressure p are obtained from

ρ¼ ∑
14

i ¼ 0
f i ð6Þ

Fig. 1. Discrete velocity set of the three-dimensional 15 velocity D3Q15 model.
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