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a b s t r a c t

A first-order formulation to analyze the dynamic response of layered soil profiles is presented as an
alternative to the widely used second-order thin-layer method by the direct stiffness approach,
including an efficient simulation of the underlaying elastic half-space. In contrast to the thin-layer
method where response is expressed through a combination of second-order propagation modes, the
proposed procedure uses first-order modal parameters that have the capacity to provide a good
approximation in the complete wave number domain k, including the exact stiffness values for k¼0 and
k-1, thus justifying its designation of doubly-asymptotic. This feature allows obtaining the exact soil
profile response for static loads, while the proposed treatment of the elastic half-space reproduces
naturally the radiation condition without a need of artificial damping. The capacity of the proposed
formulation to solve elastodynamic problems is assessed by comparing its results with those of exact
solutions available in the literature, and numerical solutions of rigid disks supported on the surface of
different soil profiles.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The direct stiffness method provides the basis for both the thin-
layer method and for the new proposed method here, designated
as first-order doubly-asymptotic formulation (FODAF). The exact
stiffness matrices in the wave number domain for a finite stratum
and for a half-space were given by Kausel and Roesset [1].
Calculation of the profile response by these methods is carried
out for each frequency by transforming the excitation from the
space domain to the wave number domain, calculating the
displacements through the stiffness matrix of the soil profile and
then applying the inverse transform into the space domain. The
Hankel Transform allows calculating the response in cylindrical
coordinates from the wave number domain to the spatial domain.
The numerical implementations of this transform lead to inac-
curacies due to singularities of the integrand that may be reduced
by refining the discretization in the wave number k at an increased
computational effort.

The thin-layer method (TLM) described in detail by Kausel [2]
and Park [3] approximates the exact stiffness of a layer by the
direct method through matrices that are independent of the wave

number. The main advantage of this method lies in approximating
the transcendental form of stiffness coefficients by algebraic
expressions leading to a solution expressed in terms of eigenvalues
associated with propagation modes of the soil profile. Such
representation allows an analytical transformation into the space
domain without additional loss of accuracy. In this approach the
layers stiffness coefficients for wave numbers which tend to
infinity are proportional to k2 while the exact stiffness coefficients
vary with k. This characteristic brings in the shortcoming that the
method is not rigorously capable of representing static solutions of
the soil profile. Representation of an underlying half-space in the
thin-layer method is done by incorporating additional strata of
increasing thickness up to a total thickness of 1.5 times the wave
length for each frequency, and vertical and horizontal dashpots at
the base of the lowest stratum as an approximation to the
consistent boundary conditions as presented by Lysmer and
Kuhlemeyer [4]. This last approach is only effective for plane and
axisymmetric models according to Lin et al. [5], so that Oliveira
Barbosa et al. [6] recently provided an improved approximation
based on the perfectly matched layer technique (PML).

The first-order formulation proposed here relies on an expan-
sion of the exact coefficients of the layer stiffness matrix up to the
first power of k generating two independent matrices with respect
to the wave number. In this way, the coefficients of the formula-
tion are proportional to k for wave numbers tending to infinity
as in the exact solution. The modal parameters result of the
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first-order in contrast to thin-layer method where they derive
from second order matrices. Addition of auxiliary degrees of
freedom (d.o.f.) to the stiffness matrices allows a good match with
the exact coefficients in the wave number domain. These auxiliary
d.o.f. are used to enlarge the modal model, and from the point of
view of modal analysis can be considered as secondary or slave d.
o.f., which once condensed to the primary or master d.o.f. allow to
reproduce adequately the variations of the stiffness coefficients
with respect to the wave number.

On the other hand, an experimental modal analysis technique
is used to adjust the exact stiffness coefficients of the half-space
through first-order modal parameters. The half-space modal
model is then transformed into physical matrices that can be
assembled with the matrices for the soil layers. Matching of the
stiffness coefficients of the half-space is carried out both for real
and imaginary components allowing a correct simulation of the
radiation process and of the solution for the static cases. As a
result, this formulation turns out to be doubly-asymptotic since it
tends to the exact solution both when the wave number tends to
zero and to infinity. Such feature is of interest in order to represent
the soil profile response at low frequencies, including the static
case, while retaining the advantage of the thin-layer method of the
exact modal transformation from the wave number domain to the
spacial domain. In addition, the foregoing formulation does not
require artificial damping to avoid numerical problems. If required,
material damping of the strata may be accounted for by adding it
to the eigenvalues of the complete soil profile. Main issues related
to the calculation of integrals of the Hankel Transform that arise in
this formulation are discussed in the paper.

2. Direct stiffness method

Fig. 1 shows load and displacement components at the inter-
faces of the jth layer according to terminology adopted by Kausel
and Roesset [1]. Cylindrical coordinates will be used here,
although resulting matrices both for strata and for the half-space
are also valid for plane wave fronts in cartesian coordinates.

Load vector Pj for each interface is transformed from the time
domain t to the frequency domain ω through the Fourier Trans-
form, azimutal coordinate θ is expressed in terms of Fourier series
through integer numbers μ, and radial coordinate ρ is transformed
to the wave number domain k by the Hankel Transform:

Pj k;μ;ω
� �¼ aμ
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where Jμ(kρ) is the Bessel function of μth order.
Force–displacement relations for a layer are expressed as:
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In cylindrical coordinates this last expression takes the form:
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where the degrees of freedom ρ and z (SV-P waves) are coupled,
while d.o.f. θ (SH waves) is decoupled from the other ones.

The displacement vector for the complete profile is obtained as:

U ¼ K �1P ¼ F P ð8Þ
where K represents the stiffness matrix of the profile obtained by
assembling the individual layers and half-space matrices, while F
represents the flexibility matrix of the soil profile.

The inverse transform to the space-time domain of the dis-
placements obtained from Eq. (8) is carried out by:

Uj ¼ ∑
1

μ ¼ 0
Tμ

Z 1

0
k Cμ

Z 1

�1
Uj eiωtdω dk ð9Þ

The stiffness matrices in a non-dimensional form associated
with the direct stiffness method are presented in what follows.

2.1. Layer stiffness matrices

The layer stiffness matrix for the d.o.f. associated with SV-P
waves (Rayleigh modes) may be expressed as:

Kst
R ¼ωρVS K

st
R ð10Þ

K
st
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Fig. 1. Load and displacement components of the jth layer.
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