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a b s t r a c t

An approximate solution of the classical eigenvalue problem governing the vibrations of a relatively stiff
structure on a soft elastic soil is derived through the application of a perturbation analysis. The full
solution is obtained as the sum of the solution for an unconstrained elastic structure and small
perturbing terms related to the ratio of the stiffness of the soil to that of the superstructure. The
procedure leads to approximate analytical expressions for the system frequencies, modal damping ratios
and participation factors for all system modes that generalize those presented earlier for the case of stiff
soils. The resulting approximate expressions for the system modal properties are validated by
comparison with the corresponding quantities obtained by numerical solution of the eigenvalue
problem for a nine-story building. The accuracy of the proposed approach and of the classical normal
mode approach is assessed through comparison with the exact frequency response of the test structure.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In a companion paper [1], the authors utilized a perturbation
approach to study the linear dynamic soil–structure interaction
problem for an elastic structure supported on a relatively stiff soil.
The analysis resulted in new approximate analytical expressions
for the system frequencies, modal damping ratios and participa-
tion factors for all system modes which generalized those pre-
sented earlier by Bielak [2–3], Jennings and Bielak [4] and Veletsos
and Meek [5] for the fundamental mode of a soil–structure system.
The purpose of the present paper is to consider the other extreme
limiting case corresponding to a structure supported on a rela-
tively soft soil. Again, the objective is to present new approximate
analytical expressions for the system frequencies, modal damping
ratios and participation factors for all system modes for this case.
These expressions would generalize those presented by Beredugo
and Novak [6] for the case of a rigid structure on a flexible soil.

The use of the perturbation approach is selected as an alter-
native to a purely numerical, approximate modal analysis [7–13] of
the linear dynamic soil–structure interaction problem, or to the
use of the more accurate Foss' method [2,4,14], or a solution in the
frequency domain. The approach has the advantage of leading to
analytical expressions which offer considerable physical insight
into the nature of the soil–structure interaction effects. However,

the perturbation approach does not cure the basic limitations of
the approximate modal analysis for soil—structure interaction
problems described, among others, by Thomson et al. [15],
Clough and Mojtahedi [16], Warburton and Soni [17], and Vaidya
et al. [18].

2. Statement of the problem and classical modal approach

Consider the problem of forced vibrations of a linear elastic
structure resting on a rigid foundation supported on a viscoelastic
soil. The system is excited by elastic waves propagating through
the soil and/or by external forces. The superstructure is discretized
into a set of L nodal masses interconnected by massless elastic
members; the rigid foundation may be partially embedded in the
soil; and the soil is represented by a continuous,three-dimensional
elastic or viscoelastic half-space. The fundamental equations of
motion of the soil–structure system as well as those pertaining to
the approximate classical modal approach have been presented in
detail in the companion paper for stiff soils [1]. Here, we briefly
recall the principal equations in order to facilitate the derivations
that will follow.

The deformed configuration of the superstructure is described
in terms of a N � 1 ðN¼ 6LÞ vector fUbg ¼ ðfu1gT ; fu2gT ; :::; fuLgT ÞT of
generalized relative displacements of the nodes fuig ¼ ðΔix;Δiy;

Δiz;θix;θiy;θizÞT with respect to a frame of reference attached to
the moving rigid foundation. The generalized total displacement
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vector for the superstructure fUbtg, which describes the motion of
the nodes with respect to a fixed frame of reference, is given by

fUbtg ¼ ½α�fUogþfUbg ð1Þ
where fUog ¼ ðΔox;Δoy;Δoz;θox;θoy;θozÞT is the total foundation
motion at a point of reference in the foundation and ½α� is a
N � 6 rigid-displacement influence matrix. The total foundation
motion fUog is given by

fUog ¼ fUn

ogþfUsg ð2Þ
where fUn

og is the foundation input motion, and fUsg ¼ ðΔsx;Δsy;

Δsz;θsx;θsy;θszÞT is the relative motion of the foundation with
respect to the input motion. The foundation input motion includes
the effect of scattering of the seismic waves by the foundation [19].

For harmonic excitation, the motion of the superstructure and
of the foundation is governed by the following system of equations
(e.g., Lee and Wesley [20]; Luco [21])
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where ½Mb�; ½Cb�; ½Kb� are the mass, damping and stiffness matrix
for the superstructure on a fixed base, ½Mo� is the mass matrix of
the foundation, ½Moo� ¼ ½Mo�þ½α�T ½Mb�½α�, ½KsðωÞ�þ iω½CsðωÞ� repre-
sents the foundation impedance matrix, and fFbg, fFog are the
generalized external forces acting on the superstructure and
foundation, respectively. In Eq. (3), the harmonic time depending
factor eiωt is omitted for brevity, and the displacement vectors fUbg
and fUsg are frequency-dependent.

Let f ~ϕ jg be the jth mode and ~ω j the corresponding natural
frequency of the un-damped building-foundation system. These
quantities satisfy the eigenvalue problem

Kb 0
0 Ksð ~ω1Þ

" #
f ~ϕjg ¼ ~ω2

j

Mb Mbα
αTMb Moo

" #
f ~ϕjg ð4Þ

in which the frequency-dependent stiffness matrix is approxi-
mated by a constant value corresponding to the fundamental
frequency of the system. Iterations are required to evaluate ~ω1

and obtain the corresponding constant stiffness matrix. Assuming
as an approximation that the system admits decomposition into
classical normal modes, the ð6L þ 6Þ vector of generalized relative
displacements fUg ¼ ðfUbgT ; fUsgT ÞT is written as

fUg ¼ ½ ~Φ�f ~ηg ¼ ∑
Nþ6

j ¼ 1
f ~ϕjg ~η j ð5Þ

where ½ ~Φ� is the modal matrix and f ~ηg is the vector of modal
amplitudes. Following the standard procedure, and neglecting the
off-diagonal terms of the reduced modal damping matrix
½ ~Φ�T ½C�½ ~Φ�, Eqs. (3) and (5) lead to the system of Nþ6 uncoupled
equations
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The modal damping ratios and participation factors for seismic
excitation are defined, as usual, by

2 ~ξi ~ωi
~Mi ¼ f ~ϕbigT ½Cb�f ~ϕbigþf ~ϕsigT ½Cs�f ~ϕsig ð7aÞ

f ~β igT ¼
1
~Mi
ðf ~ϕbigT ½Mb�½α�þf ~ϕsigT ½Moo�Þ ð7bÞ

where ½Cb� is the damping matrix of the superstructure (assumed
to admit classical damping) and ½Cs� is the damping matrix of the
foundation, i.e. the imaginary part of the impedance matrix
divided by ω. It is worth noting that, when computing the modal

damping ratios, the damping matrix of the system is evaluated at
each system natural frequency, in an effort to consider in an
approximate fashion the frequency dependence of the imaginary
part of the impedance coefficients.

3. Perturbation approach for stiff structures on soft soils

The perturbation approach for a flexible structure supported on
a soft soil starts by considering that the foundation stiffness matrix
½Ks� is proportional to a characteristic soil shear modulus G¼ ρβ2,
where ρ is a characteristic soil density and β is a characteristic
shear wave velocity in the soil. Following the same approach
adopted in [1], it is possible to define a dimensionless quantity
ðβ=ω1aÞ, where a is a characteristic dimension of the foundation
and ω1 is the fundamental fixed-base frequency of the super-
structure, which quantifies the relative stiffness between the
structure and the foundation soil. In the case of a relatively stiff
structure supported by a flexible soil, the dimensionless parameter
ε¼ ðβ=ω1aÞ2 is small and the full solution can be seen as the sum
of the solution for a perfectly-flexible soil and small perturbing
terms, which can be expressed in a power series with respect to
the small parameter ε. To start, the stiffness matrix of the
foundation is written as

½Ks� ¼ ε½Ks� ð8Þ
where ½Ks� represents the stiffness matrix of the foundation
normalized by a term proportional to the square of the soil shear
wave velocity.

The eigenvalues ~λ ¼ ~ω2 and the displacements of interest can
be expanded in terms of series of ε

~λ ¼ ~λ0þε ~λ1þε2 ~λ2þOðε3Þ
fUbg ¼ fUb0gþεfUb1gþε2fUb2gþOðε3Þ
fUsg ¼ fUs0gþεfUs1gþε2fUs2gþOðε3Þ ð9Þ
To obtain expressions for the coefficients of the series
~λ0;

~λ1;
~λ2;Ub0;Ub1;Ub2 and Us0;Us1;Us2 it is necessary to substitute

Eqs. (8) and (9) into Eq. (4), and collect and set to zero the terms
multiplying ε0; ε1 and ε2. The approach leads to the following
equations for the zero-, first- and second-order terms
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from which ~λ0;Ub0;Us0;

~λ1;Ub1;Us1;
~λ2;Ub2;Us2 can be obtained in

sequence. In addition, to determine some of these quantities, the
system modal mass ~Mi and the system modal stiffness ~K i given by

~Mi ¼ UT
b ; U

T
s
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need to be considered.
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