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a b s t r a c t

An efficient method for modelling the propagation of elastic waves in unbounded domains is developed.
It is applicable to soil–structure interaction problems involving scalar and vector waves, unbounded
domains of arbitrary geometry and anisotropic soil. The scaled boundary finite element method is
employed to derive a novel equation for the displacement unit-impulse response matrix on the soil–
structure interface. The proposed method is based on a piecewise linear approximation of the first
derivative of the displacement unit-impulse response matrix and on the introduction of an extrapolation
parameter in order to improve the numerical stability. In combination, these two ideas allow for the
choice of significantly larger time steps compared to conventional methods, and thus lead to increased
efficiency. As the displacement unit-impulse response approaches zero, the convolution integral
representing the force–displacement relationship can be truncated. After the truncation the computa-
tional effort only increases linearly with time. Thus, a considerable reduction of computational effort is
achieved in a time domain analysis. Numerical examples demonstrate the accuracy and high efficiency of
the new method for two-dimensional soil–structure interaction problems.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic soil–structure interaction is of crucial importance in a
number of engineering applications, such as the design of long-
span bridges or high-rise buildings in areas prone to earthquake
and wind loading. Taking into account of the soil–structure
interaction in a structural analysis poses a number of challenges.
Typically, the soil covers a very large domain and is thus idealised
as an unbounded medium. The greatest difficulty in the dynamic
analysis of an unbounded domain is to satisfy the radiation
condition. In addition, most soils are not isotropic, and the correct
modelling of the anisotropic soil in soil–structure interaction
analyses is challenging. To consider the material and geometrical
non-linearity occurring in the structure, it is highly desirable to
model the wave propagation directly in the time domain.

Over the last forty years, a large number of numerical methods
for the dynamic analysis of unbounded domains have been
developed. This is reflected in many review articles [1–6]. Most
existing approaches, such as the boundary element method [7,8]
and the thin-layer method [9–11] can be classified as either

rigorous or approximate. In general, rigorous methods are global
in time and space and thus computationally expensive. In the
boundary element method, the governing differential equations in
the unbounded domain are expressed as boundary integral equa-
tions using a fundamental solution, which can be difficult to obtain
for general anisotropic materials. The thin-layer method is a semi-
analytical technique for horizontally layered media, which is
formulated in the frequency domain. Anisotropy has been
addressed in Refs. [9,10].

In approximate methods, the response at a specific location is
approximately evaluated from the excitation during a limited past
time (temporally local) and at its nearby region (spatially local). Such
specific locations are referred to as artificial boundaries, which have to
be located sufficiently far away from the domain of interest, in order to
obtain results of acceptable accuracy. Classical low-order boundary
conditions as well as first high-order artificial boundaries have been
summarised in [4,12]. Here, terms higher than the second order result
in complex formulations. Instability may also occur [13]. Numerous
approaches to overcome these problems by introducing auxiliary
variables have been developed. A summary of these methods can be
found in Ref. [14]. The extension of these artificial boundaries to elastic
waves in anisotropic unbounded domains of arbitrary geometry,
however, is still a challenge [15].

The scaled boundary finite element method (SBFEM), a semi-
analytical technique based on finite element technology, has been
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developed to model waves in unbounded domains [16]. This method
combines some important features of the boundary element method
and the finite element method. For example, only the boundary is
discretised, which reduces the spatial dimension by one, while no
fundamental solution is required. The SBFE equations are formulated
from the governing equations by using the method of weighted
residuals or the principle of virtual work. Anisotropy of the material
only affects the constitutive matrix and is implemented straightfor-
wardly. The scaled boundary finite element method has been success-
fully applied to wave propagation problems in unbounded domains in
both frequency domain and time domain [17,18].

The scaled boundary finite element equation can be expressed
in dynamic stiffness. This yields a system of non-linear first-order
ordinary differential equations with respect to the frequency,
which can be solved numerically. Applying the inverse Fourier
transform to the scaled boundary finite element equation in
dynamic stiffness leads to the scaled boundary finite element
equation in unit-impulse response matrix in the time domain. This
equation has to be solved using time-discretisation [19]. Originally,
a time-discretisation scheme was proposed for the acceleration
unit-impulse response matrix in the time domain assuming a
piecewise constant variation within each time step. In order to
obtain a stable solution, this method requires the whole time
history to be discretised using a time step small enough such that
the fastest wave travels less than the distance between two
adjacent nodes in a time step. Linearisation of the acceleration
unit-impulse response matrix has also been exploited [20–22].
Recently, a new time-discretisation scheme [23] based on the
piecewise linear variation of the acceleration unit-impulse response
matrix has been proposed. This new scheme improves the stability
of the numerical approach by introducing an extrapolation para-
meter, so that a larger time step size can be used.

While the improved time-discretisation scheme [23] for the
acceleration unit-impulse response has been shown to be very
efficient, a similar algorithm for the displacement unit-impulse
response matrix has not been proposed yet. Since the displace-
ment unit-impulse response is approaching zero, a truncation time
can be introduced and only the displacement unit-impulse
response matrices before the truncation need to be calculated
and processed in a convolution integral. This is equivalent to the
linearisation techniques used in the context of acceleration unit-
impulse response in Refs. [20–22]. The objective of this paper is to
develop efficient algorithms for the calculation of the displace-
ment unit-impulse response matrix and for the evaluation of the
force–displacement relationship in the time domain. A piecewise
linear variation is assumed and an extrapolation parameter is
introduced to improve the stability of the scheme, so that larger
time steps can be used in the time-discretisation. If smaller time
steps are required in a time-domain analysis, intermediate values
of the unit-impulse response matrix can be obtained by linear
interpolation. Moreover, by truncating the displacement unit
impulse response in the time-domain analysis, the computational
effort is further reduced at a negligible loss of accuracy.

The further outline of the paper is as follows. The SBFEM
equation in the frequency domain and the original time-discreti-
sation scheme are summarised in Section 2. A new time-discreti-
sation method for the displacement unit-impulse response matrix
is given in Section 3. The coupling of far field and near field in a
time-domain analysis is addressed in Section 4. Numerical exam-
ples are presented in Section 5. Conclusions are stated in Section 6.

2. Summary of the scaled boundary finite element method

The scaled boundary finite element method is described in Refs.
[19,24,16]. For the sake of completeness, only a brief summary of

the equations necessary for the development of the time-domain
analysis in anisotropic media is given in this section.

In the scaled boundary finite element method, a scaling centre
O is chosen in a zone fromwhich the total boundary other than the
straight surfaces passing through the scaling centre must be
visible. The boundary is discretised using line elements for 2D
problems and surface elements for 3D problems. The nodal
unknown functions fuðξÞg are introduced along the radial lines
passing through the scaling centre O and a node on the boundary,
where ξ is the coordinate in the radial direction. In the frequency
domain, using the method of weighted residuals in the circumfer-
ential directions ðη; ζÞ, the SBFE equation in unknown function
fuðξÞg results,

½E0�ξ2fuðξÞg;ξξþððs�1Þ½E0��½E1�þ½E1�T ÞξfuðξÞg;ξ
þððs�2Þ½E1�T �½E2�ÞfuðξÞgþω2½M0�ξ2fuðξÞg ¼ 0; ð1Þ

where s (¼2 or 3) denotes the spatial dimension of the domain.
In Eq. (1), zero body forces and prescribed surface tractions have
been assumed. ½E0�, ½E1�, ½E2� and ½M0� are coefficient matrices
obtained by assembling the element coefficient matrices as in the
finite element method. They only depend on the geometry of the
boundary and on the elasticity matrix, which can vary in the
circumferential directions. Anisotropy can be modelled straight-
forwardly by using an appropriate constitutive matrix. The SBFE
equation in displacement (1) can be transformed into an equiva-
lent equation in dynamic stiffness:

ð½S1ðωÞ�þ½E1�Þ½E0��1ð½S1ðωÞ�þ½E1�T Þ
�ðs�2Þ½S1ðωÞ��ω½S1ðωÞ�;ω�½E2�þω2½M0� ¼ 0: ð2Þ

Eq. (2) is a system of non-linear differential equations in the
independent variable ω, where ω represents the angular fre-
quency. The displacement dynamic stiffness matrix ½S1ðωÞ� can
be changed into the acceleration dynamic stiffness matrix ½M1ðωÞ�
by using ½M1ðωÞ�ðiωÞ2 ¼ ½S1ðωÞ�. In the time domain, inverse
Fourier transform is applied to the SBFE equation in acceleration
dynamic stiffness matrix, which yields a transformed SBFE equa-
tion in acceleration unit-impulse response matrix in the time
domain:Z t

0
½m1ðt�τÞ�½m1ðτÞ� dτþt

Z t

0
½m1ðτÞ� dτþ½e1�

Z t

0

Z τ

0
½m1ðτ0Þ� dτ0 dτ

þ
Z t

0

Z τ

0
½m1ðτ0Þ� dτ0 dτ½e1�T �t3

6
½e2�HðtÞ�t½m0�HðtÞ ¼ 0; ð3Þ

where ½m1ðtÞ� is the transformed acceleration unit-impulse
response matrix, after performing a Cholesky decomposition of
½E0�. A detailed derivation of Eq. (3) is given in Ref. [19].

The original time-discretisation scheme for Eq. (3) is based on
the assumption of a piecewise constant variation of the accelera-
tion unit-impulse response matrix with time. The constant value
½m1�n applies at time t ¼ ðn�0:5ÞΔt. Here, nZ1 andΔt is the time
step size. An algebraic Riccati equation is obtained for the first
time step, whereas the above approach leads to a Lyapunov
equation for all the following time steps [18,19].

Numerical examples show that, when using the above constant
discretisation scheme, in order to obtain a stable solution, the time
step size Δt has to be chosen very small [23]. This leads to a large
total number of time steps. Since Eq. (3) contains a convolution
integral with respect to time, the large number of time steps will
result in a large computational effort. In order to reduce the
computational time, a new algorithm has been proposed in Ref.
[23], which is based on assuming a piecewise linear variation of
½m1� over each time step, and on using an extrapolation parameter
θ to improve stability. That is, Eq. (3) is evaluated at time
t0n ¼ tn�1þθΔt for each time station n. In the following section,
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