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a b s t r a c t

Based on the u–U formulation of Biot equation and the assumption of zero permeability coefficient, a
viscous-spring transmitting boundary which is frequency independent is derived to simulate the
cylindrical elastic wave propagation in unbounded saturated porous media. By this viscous-spring
boundary the effective stress and pore fluid pressure on the truncated boundary of the numerical model
are replaced by a set of spring, dashpot and mass elements, and its simplified form is also given. A u–U
formulation FEA program is compiled and the proposed transmitting boundaries are incorporated
therein. Numerical examples show that the proposed viscous-spring boundary and its simplified form
can provide accurate results for cylindrical elastic wave propagation problems with low or intermediate
values of permeability or frequency content. For general two dimensional wave propagation problems,
spuriously reflected waves can be greatly suppressed and acceptable accuracy can still be achieved by
placing the simplified boundary at relatively large distance from the wave source.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis of the dynamic behavior of saturated porous
media is of great importance in geotechnical engineering and
has attracted more and more attention in many fields. Particularly
in earthquake engineering, the phenomena of liquefaction in soil
can only be explained by considering the interaction of the soil
skeleton and the pore fluid. The theory of wave propagation in
saturated porous media was originally established by Biot [1] and
has been developed by many researchers [2–5]. Numerical pre-
diction such as finite element method based on concepts intro-
duced by Biot has been widely used in solving dynamic problems
due to its versatility and reliability. However, when the spatial
domain of the problem is unbounded, a proper artificial boundary
designed to simulate the wave propagation towards infinity with-
out reflecting back is to be imposed on the truncated boundary of
the finite element model. Such artificial boundary condition is also
named in many literatures as absorbing, silent, non-reflecting,
transmitting, radiating or transparent boundary conditions. The
term ‘transmitting boundary’ is used here.

For one-phase media, a large number of transmitting bound-
aries have been proposed, a review on which can be found in [6]
and the references therein. For saturated porous media, however,
the interaction between the solid skeleton and the compressible

pore fluid makes it much more complicated to establish the
transmitting boundary for dynamic analysis.

Biot theory reveals that there are three kinds of body waves in
saturated porous media. Inertial and mechanical coupling of the
two phases makes P1 and P2 wave speeds not equal to that of
single phase [7], whereas viscous coupling makes wave propaga-
tion dispersive. In condition of low permeability and low fre-
quency, high viscous coupling makes the pore fluid absolutely
restricted by solid skeleton and their relative motion disappears,
thus, the saturated porous media behaves as a one-phase media.
While in condition of high permeability and high frequency,
viscous coupling no longer exists. Only in the above two extreme
conditions are the body wave speeds non-dispersive. The transi-
tion from low to high viscous coupling behaviors occurs over quite
a narrow range of permeability or frequency values [8].

Encouraged by the great advances achieved in one-phase
media, several studies have been carried out on the transmitting
boundaries for saturated porous media. Modaressi and Benzenati
[9,10] first extended the paraxial approximation approach to the
case of two-phase media assuming a plane wave pattern. By using
Fourier transforms with respect to wave front direction and two
tangential directions, the u–p equations are solved and three body
wave speeds have been decomposed. For each wave the paraxial
approximation method used in one-phase media can be directly
adopted. In the same way, Akiyoshi et al. presented paraxial
approximation with u–w formulations for linear isotropic porous
media [11] and then for general conditions of transversely iso-
tropic and anisotropic porous media [12]. The above transmitting
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boundaries are almost equivalent to viscous boundaries in the
fundamental mode. To obtain the intensities of the dampers the
second dilatational wave was neglected. By using Fourier trans-
forms to solve the u–w equations, Degrande and De Roeck [13,14]
have decomposed the solution of the wave field into incident and
reflected waves and zeroed the amplitude of reflected wave in
order to relate the effective stresses and pore pressures to the
displacements of the transmitting boundary. Consequently the
transmitting boundary is local in space and non-local in time, and
the finite element system is solved in the frequency domain. Only
in the low-frequency limit, it reduces to a frequency independent
viscous boundary. Gajo et al. [15] established a first-order differ-
ential equation system which allow the propagation of elastic
waves traveling only on the outgoing direction, then they obtained
higher-order multidirectional boundaries by using the same gen-
eralizations proposed by Higdon [16,17]. The first-order boundary
which can be viewed as an extension of the viscous method to
two-phase media is derived for both cases of vanishingly small and
infinitely large viscous coupling. The first condition corresponds to
a very high permeability and high-frequency content, of which the
results can be called the ‘drained’ boundaries. Whereas, the second
condition corresponds to a low permeability and low-frequency
content, of which the results can be called the ‘undrained’
boundaries. The advantage of this boundary lies in its indepen-
dency of frequency and its convenience for implementation. For
practical applications, suitable kinds of boundary condition can be
selected according to the frequency content and the permeability
value of the problem. Assuming an infinite permeability, Zerfa and
Loret [18] developed a viscous boundary for transient analysis in
the time domain. The method, derived from the constitutive
equations proposed by Bowen's, consists of applying viscous
tractions on both solid and fluid phases along the truncated
boundary. The effect of the second dilatational wave is no longer
neglected, and numerical results show that it works correctly also
for problems with relatively low permeability.

The methods above are all based on one-dimensional plane
wave hypothesis. As is noticed in one-phase media, the viscous
boundary may have stability problem when dealing with low
frequency dynamic loads. Cylindrical or spherical wave radiation
should be considered in order to simulate the elastic recovery
capability of the exterior saturated porous media. Based on the u–
p cylindrical wave equations of saturated porous media with the
assumption of zero permeability coefficient, Liu and Song [19]
proposed a viscous-spring transmitting boundary, the derivation
method of which is the same as Deeks and Randolph's method
[20]. The efficiency and applicability of the proposed transmitting
boundary were discussed. It was demonstrated that the proposed
boundary can provide results with acceptable accuracy for earth-
quake engineering problems in saturated soils. Wang and Zhao
[21] also developed two-dimensional and three-dimensional vis-
cous-spring transmitting boundaries based on cylindrical and
spherical u–U equations assuming an infinite permeability. The
effect of the second dilatational wave has been neglected in both
studies. It is worth noting that Li and Song [6] introduced the
achievement of high-order accurate transmitting boundary to the
application in saturated porous media. By using cylindrical wave
equations and the assumption of zero permeability coefficient, the
dynamic stiffness coefficients for cylindrical P and SV waves are
constructed, then a temporal localization method is used to
determine the spring, dashpot and mass parameters of the high-
order local time-domain transmitting boundary. The approach is
implemented into the DIANA SWANDYNE II program [22], and
several different numerical examples demonstrated its good wave-
absorbing capabilities.

The above transmitting boundaries for saturated porous media
are all constructed based on the Biot theory [1], using different

forms of governing equations, such as u–p, u–w and u–U formula-
tions. The u–w and u–U formulations are equivalent to the original
equations of motion proposed by Biot, while the u–p formulation
is a simplification of the original equations, where the terms
containing the fluid acceleration is neglected. As a consequence
it is valid only for low and medium frequency problems. It is
noticed that inaccuracy of the u–p formulation can be quite
pronounced for high-frequency, short-duration problems [22].
Therefore development of transmitting boundary based on u–U
equations is necessary.

In this paper, a time-domain viscous-spring transmitting
boundary is derived from the cylindrical u–U equations, and its
applications to both axi-symmetric and general plane-strain pro-
blems are demonstrated. The unbounded saturated porous media
is assumed to be linear elastic and isotropic and the assumption of
zero permeability coefficient is also applied. The effective stresses
on the truncated boundary results from the combination of a line
of spring, dashpot, mass elements linked to the solid phase on
both of the radial and the circumferential directions, while the
pore fluid pressure results from the combination of a line of
dashpot, mass elements linked to the fluid phase on the radial
directions. A u–U formulation FEA program is compiled and the
proposed viscous-spring transmitting boundary as well as its
simplified form are implemented therein. The accuracies of the
proposed transmitting boundaries are demonstrated by numerical
results for cylindrical radiation problems in saturated porous
media. The potential applications of the simplified boundary to
general two-dimensional infinite wave radiation problems are also
discussed.

2. Governing equations

After the establishment of the theory of propagation of elastic
waves in saturated porous media by Biot [1], many derivations and
modifications have been made subsequently. The generally used
u–U forms of equations are proposed by Zienkiewicz and Shiomi
[4]. For small strain linear elastic isotropic porous media the
governing equations are as follows:

σij;jþρbi ¼ ρ1 €uiþρ2
€Ui ð1Þ

�p;i þρf bi ¼ ρf
€Uiþnk�1

f ð _Ui� _uiÞ ð2Þ

σij ¼ σ0
ij�αδijp¼ 2μεijþλεkkδij�αδijp ð3Þ

p¼ �Q ððα�nÞεiiþnUi;iÞ ð4Þ

where ui and Ui are the absolute displacement of the solid and the
pore fluid respectively; σij and σ0

ij are the total stress and effective
stress respectively; bi is the body force; p is the pore fluid
pressure; n is the porosity of the soil; ρ, ρs and ρf are densities
of the assembly, the solid and fluid phases, respectively and
ρ1¼(1�n)ρs, ρ2¼nρf, ρ¼ρ1þρ2; kf is the permeability which is
related with Darcy permeability coefficient k by kf¼k/ρfg in which
g is the gravity acceleration; λ and μ are Lame constants for the
solid skeleton; α and Q are two introduced parameters, which can
be expressed as

α¼ 1�Kb=Ks

1=Q ¼ n=Kf þðα�nÞ=Ks
ð5Þ

where Ks, Kf and Kb are the bulk modulus of the solid, fluid and the
assembly respectively.
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