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a b s t r a c t

The response of rectangular rigid footings resting on an elastic soil of shear modulus decreasing
monotonically with depth is studied. Such profiles are typically encountered after ground improvement.
The propagation characteristics of SV/P surface waves are investigated, showing the appearance of cut-
off frequencies above which surface waves do not exist. The semi-analytical method of the subdivision of
the footing/soil contact area is then used for solving the boundary value problem, whereby the influence
functions for the sub-regions are determined by integration of the corresponding surface-to-surface
Green's functions. Impedance functions are presented over a wide range of frequencies for typical values
of the non-homogeneity parameters, the Poisson's ratio and the foundation geometry. The salient
features that are associated with the non-homogeneity and the appearance of cut-off frequencies are
elucidated.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Elastic solids with shear modulus varying with depth are
successfully used to model wave propagation and the associated
phenomena in geomechanics. While stratified media present the
general case, the continuous variation of stiffness with depth is
characteristic to uniformly layered deposits due to the dependency
of soil stiffness on effective confining pressure. The continuous
variation of soil stiffness with depth is often referred to as non-
homogeneity. The vast majority of work hitherto published deals
with a monotonic increase of shear modulus or shear wave
velocity with depth. In analytical solutions the criterion for the
selection of a particular profile was the solvability of the associated
mathematical problem. Often, a specific value of the Poisson's ratio
is assigned to the half-space to simplify matters. Among the
various relevant publications, one may mention those by Awojobi
[1], Selvadurai et al. [2], Waas et al. [3], Guzina and Pak [4], Vrettos
[5], Muravskii [6], Baziar and Song [7]. A summary is given by
Mylonakis et al. [8]. At the same time, the case of a monotonic
decrease of soil stiffness with depth has attracted less attention,
despite the fact that there are situations where either the natural
ground exhibits a stiff crust, or the surficial layers have been
strengthened by ground improvement techniques to provide
adequate foundation bearing [9].

The case of depth-degrading soil stiffness shows some particu-
larities that are not obvious at first sight. While it can be easily
shown that SH surface wave propagation is not possible in this type
of half-space, as known from the derivation for Love waves in a
layer underlain by a homogeneous half-space, systematic investiga-
tion of the conditions for the existence of SV/P surface waves in a
half-space with depth-decreasing modulus is limited. In a paper by
the author [10], it has been shown that for a sufficiently strong
vertical non-homogeneity, SV/P surface waves (the counterpart of
the Rayleigh wave for nonhomogeneous profiles) do not exist above
certain frequencies. Consequently, the associated surface-to-surface
Green's functions (half-space displacement due to unit surface load)
show at large distance from the source the attenuation typical for
compressional and shear body waves [10].

Limited information for this class of soil pertains also to the
impedance functions for rigid footings, an exception being the
work by Gazetas [11] that presents impedance functions for rigid
strip footings on a two-layer system consisting of a surface layer
with parabolically decreasing stiffness underlain by a half-space.
The static torsional response has been investigated by Rajapakse
and Selvadurai [12] by assuming a layer with linearly decreasing
stiffness underlain by a half-space with linearly increasing stiffness
with depth.

To fill this gap, impedance functions for rectangular footings for
vertical and rocking motion are derived in the following. The method
of the subdivision of the contact area is adopted for the solution by
assuming relaxed boundary conditions for the soil-footing interface.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/soildyn

Soil Dynamics and Earthquake Engineering

http://dx.doi.org/10.1016/j.soildyn.2014.06.012
0267-7261/& 2014 Elsevier Ltd. All rights reserved.

E-mail address: vrettos@rhrk.uni-kl.de

Soil Dynamics and Earthquake Engineering 65 (2014) 294–302

www.sciencedirect.com/science/journal/02677261
www.elsevier.com/locate/soildyn
http://dx.doi.org/10.1016/j.soildyn.2014.06.012
http://dx.doi.org/10.1016/j.soildyn.2014.06.012
http://dx.doi.org/10.1016/j.soildyn.2014.06.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.soildyn.2014.06.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.soildyn.2014.06.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.soildyn.2014.06.012&domain=pdf
mailto:vrettos@rhrk.uni-kl.de
http://dx.doi.org/10.1016/j.soildyn.2014.06.012


The Green's functions developed by the author for a reverse-type of
vertical non-homogeneity with finite modulus values at the surface
and at large depths are used in the respective numerical method.

2. Problem statement

Consider a rigid massless rectangular foundation with side
lengths 2b and 2a with bZa resting on the surface of a linear–
elastic, isotropic half-space of constant mass density ρ and the
Poisson's ratio v, with 0rvo0.5, and shear modulus G varying
with depth z such that

GðzÞ ¼ G0þðG1�G0Þð1�e�αzÞ ð1Þ
where G0 and G1 are the shear moduli at the surface and at
infinite depth, respectively, and α is a constant with dimension of
inverse length which is referred to as non-homogeneity gradient.
G0rG1 corresponds to the regular case encountered in soils,
while a depth-degrading modulus is described by simply setting
G0ZG1.

The foundation is loaded at its center by a harmonic vertical
load Peiωt and harmonic moments Myeiωt and Mx eiωt about the
long and short foundation axis, respectively, as depicted in Fig. 1,
whereby ω is the circular frequency, i is the imaginary unit, and t
denotes time. The contact area is assumed to be frictionless, i.e.
only normal stresses and vertical displacements are considered
(relaxed boundary conditions).

The method adopted for solving this mixed boundary value
problem is identical to that outlined in Refs. [5,13]. Before
proceeding with that solution, the wave propagation character-
istics in this type of soil are first considered.

3. SV/P surface wave propagation

Surface waves under free-field conditions require traction-free
surface and vanishing displacements at large depths. These condi-
tions lead to the characteristic equation of the respective eigenvalue
problem. For a homogeneous half-space, and depending on the value
of the Poisson's ratio, the characteristic equation has either three real
roots or one real root and two complex conjugate roots. The smallest
real root defines the Rayleigh surface wave that propagates along the

surface and decays into the medium. The other roots are usually
classified as physically not meaningful [14]. Hence, only one vibration
mode, the fundamental mode, is possible.

For a half-space with shear modulus varying with depth, the
solution of the characteristic equation is expressed in terms of
eigenvalue pairs of wavelength versus frequency ðk;ωÞ or, equiva-
lently, propagation velocity vs. frequency ðvSV=P ;ωÞ. This relation-
ship defines the dispersion law of the medium.

For the regular case of depth-increasing modulus, several
vibration modes are possible: the fundamental mode that appears
over the entire frequency range, and higher modes that arise
above distinct cut-off frequencies [15]. The dispersion is called
normal with the propagation velocity decreasing with frequency.

Things are entirely different when the modulus decreases with
depth: When solving the eigenvalue problem for a half-space with
G04G1, it is observed that as long as the non-homogeneity is weak, a
real-valued solution of the characteristic equation is found over the
entire frequency range. The dispersion is characterized as anomalous
with higher frequencies yielding higher surface wave propagation
velocities. However, as the non-homogeneity becomes stronger, and
depending on the value of the Poisson's ratio, cut-off frequencies
appear above which no real valued wave number is found as solution
to the characteristic equation, i.e. no solution fulfilling the radiation
condition at infinity is possible [10]. The derived solution is valid for

G0

G1
o2 ð2Þ

whereby for convenience the moduli ratio is replaced by the degree of
non-homogeneity Ξn

0 :

Ξn

0 ¼ 1�G1
G0

ð3Þ

Numerical values for the cut-off frequencies for typical values
of Ξn

0 and of the Poisson's ratio v are given in Table 1. They are
slightly different from those given in Ref. [10] due to the increased
accuracy near the cut-off limit. The frequency is given in dimen-
sionless form in terms of the parameter θ , which links the non-
homogeneity gradient α to the shear wave number corresponding
to the shear modulus at the surface G0

θ¼ ω

αvS0
ð4Þ

where

vS0 ¼
ffiffiffiffiffiffi
G0

ρ

s
ð5Þ
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Fig. 1. The problem under consideration.

Table 1
Cut-off frequencies θcut�off for the existence of SV/P surface waves for various
combinations 0.2rΞn

0 r0.49 and 0rvr0.49. A hyphen indicates that a cut-off
frequency was not found.

v θcut�off

Ξn
0

0.2 0.25 0.3 0.4 0.44 0.49

0 – 22.565 4.893 1.813 1.402 1.055
0.05 – 10.233 3.893 1.654 1.301 0.992
0.1 – 6.601 3.239 1.518 1.211 0.934
0.15 22.277 4.949 2.777 1.401 1.130 0.880
0.2 10.355 3.947 2.431 1.296 1.056 0.829
0.25 6.765 3.287 2.159 1.203 0.987 0.781
0.3 5.030 2.817 1.938 1.117 0.924 0.735
0.35 4.008 2.461 1.752 1.038 0.864 0.691
0.4 3.319 2.178 1.591 0.965 0.807 0.649
0.45 2.844 1.944 1.449 0.895 0.752 0.607
0.49 2.538 1.781 1.345 0.842 0.710 0.575
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