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a b s t r a c t

Epistemic uncertainties can be classified into two major categories: parameter and model. While the first
one stems from the difficulties in estimating the values of input model parameters, the second comes
from the difficulties in selecting the appropriate type of model. Investigating their combined effects and
ranking each of them in terms of their influence on the predicted losses can be useful in guiding future
investigations. In this context, we propose a strategy relying on variance-based global sensitivity analysis,
which is demonstrated using an earthquake loss assessment for Pointe-à-Pitre (Guadeloupe, France). For
the considered assumptions, we show: that uncertainty of losses would be greatly reduced if all the
models could be unambiguously selected; and that the most influential source of uncertainty (whether of
parameter or model type) corresponds to the seismic activity group. Finally, a sampling strategy was
proposed to test the influence of the experts’ weights on models and on the assumed coefficients of
variation of parameter uncertainty. The former influenced the sensitivity measures of the model
uncertainties, whereas the latter could completely change the importance rank of the uncertainties
associated to the vulnerability assessment step.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Predicting the consequences (losses) of future earthquakes is of
primary importance for risk management. One of the greatest
challenges when building such predictive models is the treatment
of the multiple sources of uncertainty pervading the different
steps of earthquake loss assessment (seismic source, wave propa-
gation, local site effects, exposed inventory, vulnerability assess-
ment, and damage and loss estimation). This issue has been
highlighted by numerous authors over the last decades e.g.,
[1–5]. It is now common to classify uncertainty into randomness
(aleatory variability) and knowledge-based uncertainty (epistemic
uncertainty) e.g., [6]. Though appearing to be partly a choice of the
modeller [7], this categorization can be useful in practice, because
decisions motivated by the aleatory variability will be quite
different from decisions based on the knowledge-based uncer-
tainty. In the first case, no concrete actions can reduce randomness
and only “indirect” actions can be proposed by means of protective
or preventive measures. In the second, concrete actions can be
undertaken to act directly on the uncertainty reduction and the
best solution is to set priorities for data collection/analysis under

budget constraints on the basis of the identification of the most
influential sources of knowledge-based uncertainties e.g., [8].

To reduce epistemic uncertainties, sensitivity analysis can
provide valuable information by addressing the following ques-
tions: what sources of uncertainty contribute the most to the
uncertainties in the predicted losses? And at what stages of the
loss assessment procedure (e.g., hazard, vulnerability or damage
evaluation)? How to rank these sources of uncertainties? And how
to set priorities for future investigations? The great value of
addressing such questions has long been recognized in the field
of seismic risk assessments and, more specifically, for probabilistic
seismic hazard assessment (PSHA) relying on logic trees [9]. Two
main approaches have been followed: a “one-factor-at-a-time”
(OAT) approach analysing variations from a base model results by
varying, in turn, the input parameters or considering different
scenarios [3,10]; and the multi-parameter method based on
factorial designs allowing simultaneous changes to parameters
on the branches of a logic tree [11]. This approach was applied in
an Italian case study by Barani et al. [12].

In the present article, we focus on two types of epistemic
uncertainty, which are those most commonly encountered in
practice: parameter and model. The first category stems from the
difficulties in estimating the input parameters (in a broad sense) of
models/analysis due to the limited number, poor representative-
ness (caused by time, space and financial limitations), and impre-
cision of observations/data. In addition, models are necessarily
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simplified representations of the phenomena, i.e. they are based
on assumptions, and compliance between the model assumptions
and the properties of the system being analysed never exist in an
absolute sense e.g., [13]. Uncertainty can then appear in the
structure/form of the model, which depends on the choice of
variables, dependencies, processes and so forth regarded as
relevant and prominent for their purpose in the model. Yet, in
some cases, a set of different models (e.g. differing in their
structure and input variables) are either considered equally
adequate (e.g., they equally fit the observations), or they are
associated with different confidence levels. This is exemplified
by the extensively debated issue of selecting appropriate ground
motion prediction equations (GMPEs, e.g., [14]).

In this context, the objective of the present article is to show
how recent advances in global sensitivity analysis [15] can
provide valuable information to answer the following questions
for earthquake loss estimation: What is the contribution of model
uncertainty to the uncertainty in predicted losses when simulta-
neously accounting for parameter uncertainty? How to measure
such a contribution? Should future investigations spend effort
on the modelling procedure or on parameter estimation? In
this view, we propose a strategy based on variance-based
sensitivity analysis (VBSA), which can overcome some limitations
of the afore-mentioned sensitivity approaches (as discussed in
Section 2).

The remainder of the present paper is organized as follows.
In the next section, we describe the global sensitivity analysis
using VBSA and the method for both investigating sensitivity to
model and parameter uncertainty. Such a strategy is applied to
predictions of direct monetary losses for the city of Pointe-à-Pitre
(Guadeloupe, France) using simplified information on uncertainty
(but based on real data). The following section describes the
earthquake loss model and the case study of Pointe-à-Pitre
(context and assumptions for representing the different uncer-
tainty sources). It should be underlined that the application to
Pointe-à-Pitre has been chosen for demonstration purposes only
and all the presented results should not be interpreted as a
definitive uncertainty assessment. The subsequent section shows
the results of the VBSA and discusses how results are modified by
changing the size of the different sources of uncertainty. The
article ends with some brief conclusions and suggestions for
future work.

2. Investigating sensitivity to model and parameter
uncertainty

In this section we present the technique used here to assess the
sensitivity of the results to the two different types of uncertainty.

2.1. Variance-based sensitivity analysis

VBSA is a stochastic method providing a quantitative measure
of sensitivity [16,17] assigned to each source of uncertainty
(represented by any kind of probabilistic distribution, e.g. uniform,
normal or discrete). VBSA presents the advantages of exploring the
sensitivity over the whole range of variation (i.e. in a global
manner) of the input random variables and of fully accounting
for possible interactions between them. This is contrary to the OAT
technique, as discussed by Saltelli and Annoni [18]. VBSA allows
identification of:

– which input parameters contribute the most to the output
variability (within the “factors’ prioritisation setting” as described
by Saltelli et al. [15]) through the use of the Sobol’ indices of

first order, also called main effects (see below for a formal
description);

– which input parameters interact with one another through the
use of the Sobol’ indices of higher order;

– which input parameters are insignificant and can be eliminated
to “simplify” the model (within a “factors’ fixing setting” as
described by Saltelli et al. [15]) through the use of total effects
(see below for a formal description).

By comparing the main and total effects, this technique
improves insight into the nature of the considered model. For
instance, the case where main and total effects are of equal
importance and the sum of the main effects nearly reach unity
indicates that the uncertainty of the output (i.e. the variance) is
only due to the sum of the effects of each uncertain parameter
taken alone, and not from interactions among them. Thus, the
model can be simplified and be represented as a sum of elemen-
tary one-dimensional functions of the input parameters. Formally,
the model is said to be “additive”. Conversely, if the main effects
have low values compared to the total effects, this indicates strong
high-order interactions between the parameters, hence a model of
high complexity. Thus, VBSA helps to explore the model behaviour
in the domain of variation of the input parameters, which can be
of great value when using a loss model in a black-box fashion (see
discussion provided by Bommer et al. [4]). More recently, the
overview of the model complexity brought by VBSA has been
better formalized with the notion of effective dimension [19],
which can be understood as the number of dominant parameters
of the model.

Finally, VBSA is general in the sense that it applicable to any
kind of model (linear, non-linear, additive and so forth), i.e.
without introducing a priori assumptions on its mathematical
structure [15]. For instance, simultaneously varying the extreme
values of parameters (e.g. using a two-level factorial design as
carried out by Rabinowitz and Steinberg [11]) only shows good
results for quasi-linear models.

2.2. Brief mathematical description

We introduce here the basic concepts of VBSA. For a more
complete introduction and full derivation of the equations, the
interested reader is referred to Saltelli et al. [15] and references
therein.

Let us define f as the earthquake loss model. Considering the n-
dimensional vector X as a random vector of independent random
variables Xi (i¼1,2,…,n), then the output Y¼ f(X) is also a random
variable (as a function of a random vector). VBSA aims to
determine the part of the total unconditional variance Var(Y) of
the output Y resulting from each input random variable Xi.

In practice, the partial and total variances of Y are determined
based on the decomposition of f (i.e. functional analysis of variance
decomposition of f as proposed by Sobol’ [16]), into summands of
increasing dimension (provided that f can be integrated). Each of
these terms can be evaluated through multidimensional integrals,
which can be approximated through Monte-Carlo-based algo-
rithms (see [20], for a recent review and discussion). For instance,
the sequential algorithm of Saltelli et al. [20], using a formula of
Jansen [21], requires a total of N(nþ2) model evaluations, where N
is the number of Monte-Carlo samples and n is the number of
input uncertain parameters Xi. This is noteworthy as the quality of
the Monte-Carlo-based approach directly depends on the sample
size N. The interested reader is referred to Saltelli et al. [15] for a
review of other computational procedures.
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