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A B S T R A C T

The computation of the probability of a rare (failure) event is a common task in structural reliability analysis. In
most applications, the numerical model defining the rare event is nonlinear and the resulting failure domain
often multimodal. One strategy for estimating the probability of failure in this context is the importance sam-
pling method. The efficiency of importance sampling depends on the choice of the importance sampling density.
A near-optimal sampling density can be found through application of the cross entropy method. The cross
entropy method is an adaptive sampling approach that determines the sampling density through minimizing the
Kullback-Leibler divergence between the theoretically optimal importance sampling density and a chosen
parametric family of distributions. In this paper, we investigate the suitability of the multivariate normal dis-
tribution and the Gaussian mixture model as importance sampling densities within the cross entropy method.
Moreover, we compare the performance of the cross entropy method to sequential importance sampling, another
recently proposed adaptive sampling approach, which uses the Gaussian mixture distribution as a proposal
distribution within a Markov Chain Monte Carlo algorithm. For the parameter updating of the Gaussian mixture
within the cross entropy method, we propose a modified version of the expectation-maximization algorithm that
works with weighted samples. To estimate the number of distributions in the mixture, the density-based spatial
clustering of applications with noise (DBSCAN) algorithm is adapted to the use of weighted samples. We
compare the performance of the different methods in several examples, including component reliability pro-
blems, system reliability problems and reliability in varying dimensions. The results show that the cross entropy
method using a single Gaussian outperforms the cross entropy method using Gaussian mixture and that both
distribution types are not suitable for high dimensional reliability problems.

1. Introduction

In structural reliability, the goal is to assess the effects of uncertain
input variables on the performance of an engineering system. The main
objective is to evaluate the probability of unsatisfactory performance of
the system, the probability of failure PF . Let X be a random vector with
outcome space �∈x n that collects all uncertain input variables. The
performance of a system can be assessed by means of the limit state
function, denoted by xg ( ). If the limit state function gives a value
smaller or equal to zero the system fails, while otherwise the system has
satisfactory performance. Hence, the event defining failure of the
system is given by

�= ∈ ⩽x xF g{ : ( ) 0}n (1)

The probability of failure is defined through the following integral:

�
∫= x x xP I f( )· ( ) dF n (2)

In this definition, xf ( ) is the joint probability density function (PDF) of
X and xI ( ) is an indicator function defined as

= ⎧
⎨⎩

⩽x xI g( ) 1 if ( ) 0
0 else (3)

The function xg ( ) depends on the outcome of an engineering model,
and hence the probability of failure cannot be evaluated analytically.
Therefore, the failure probability needs to be approximated by means of
an efficient method that minimizes the number of model evaluations
[1]. Several methods have been developed, including approximation
methods such as the first/second order reliability method (FORM/
SORM) [2,3] and sampling-based methods such as the Monte Carlo
simulation (MCS) and its adaptive variants (e.g. [4–10]). The main
advantage of sampling-based strategies is their robustness with respect
to the complexity of the limit state function. Furthermore, they are
asymptotically exact and, in contrast to approximation methods, in-
formation about the quality of the obtained result is more easily
available.
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Sampling methods are based on MCS; however, MCS is especially
inefficient in estimating small failure probabilities, which is typically
the goal in reliability assessment of engineering systems. The variance
of the MCS estimate is inversely proportional to the target failure
probability, which leads to prohibitively large sample sizes for ob-
taining sufficiently accurate estimates. The aim of advanced sampling-
based methods is to enhance the efficiency of MCS through reducing the
required sample size while keeping the variance of the estimate low.

A standard variant of MCS is the importance sampling (IS) method.
IS aims at decreasing the variance of the MCS probability estimate by
sampling from an alternative sampling density, the so-called IS density

xh ( ). Eq. (2) can be modified as follows:

�
∫= x x

x
x xP

I f
h

h
( )· ( )

( )
· ( ) dF n (4)

Provided that the support of xh ( ) contains the failure domain, this
modification does not alter the value of the integral. The IS estimate of
PF is given as follows:

 ∑=
=
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x
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n

I
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s i

n

i
i

i1

s

(5)

wherein the samples = …x i n{ , 1, , }i s are distributed according to xh ( ).
The efficiency of IS depends on the choice of the IS density. A near-
optimal IS density can be found through application of the cross en-
tropy (CE) method [11]. The CE method is an adaptive sampling ap-
proach that determines the sampling density through minimizing the
Kullback-Leibler (KL) divergence between the theoretically optimal IS
density and a chosen parametric family of probability distributions.
Typically, the multivariate normal distribution is chosen as parametric
distribution family, while recently the Gaussian mixture (GM) has been
proposed for handling multimodal failure domains [7,12]. In this study
we investigate the performance of these two distribution types within
the CE method and propose a new updating scheme for estimating the
parameters of the GM model through a modified expectation-max-
imization (EM) algorithm. Moreover, another recently proposed ap-
proach, called sequential importance sampling (SIS) [6], which also
makes use of the Gaussian mixture, is discussed and its performance is
compared to the one of the CE method.

The structure of the paper is as follows. First, the CE method is
described and a general algorithm for its implementation is presented.
Afterwards, the multivariate Gaussian and Gaussian mixture distribu-
tion types are introduced and their integration in the CE method is
described; for integrating the Gaussian mixture model, a novel EM al-
gorithm is proposed. Subsequently, a brief overview of SIS is given. The
performance of the different methods is demonstrated by means of
numerical examples. Finally, the results are summarized and the con-
clusions are presented.

2. Cross entropy method

For an efficient and reliable estimation of the failure probability
with IS, the sampling density needs to be chosen carefully. In fact, there
exists an optimal IS density, whose PDF is [13]:

�
∫

=∗ x
x x
x x x

p
I f
I f

( )
( )· ( )
( )· ( ) dn (6)

Eq. (6) is the density of the random variables censored at the failure
domain; its normalizing constant is the target probability of failure. The
IS density of Eq. (6) leads to a variance of the probability estimate of
zero. That is, a single sample of this density would lead to the exact
value of the probability of failure. However, this density is not applic-
able in practice, as it requires a priori knowledge of the failure domain
and the target failure probability.

Even though Eq. (6) cannot be used directly, one can use samples at
the failure domain to identify a near-optimal IS density through fitting a

distribution model. The CE method identifies the parameters of a
chosen distribution model through minimizing the KL divergence be-
tween the sought sampling density and the optimal IS density of Eq. (6).
The KL divergence is a measure of the difference between two PDFs,
and is defined as [14]
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where E [·]p1 denotes the expectation with respect to xp ( )1 . Eq. (7) is
also known as the relative cross entropy [15]. In the following the terms
cross entropy and KL divergence are used interchangeably.

The expression in Eq. (7) can be divided into two parts:

� �
∫ ∫= −x x x x x x x xD p p p p p p( ( ), ( )) ( )·ln( ( )) d ( )·ln( ( )) d1 2 1 1 1 2n n (8)

Replacing xp ( )1 with the optimal (but unknown) IS density ∗ xp ( ) and
xp ( )2 with a parametric IS density x vh ( ; ), where v is the parameter

vector, Eq. (8) can be rewritten to describe the cross entropy between
these two PDFs:

� �
∫ ∫= −∗ ∗ ∗ ∗x x v x x x x x v xD p h p p p h( ( ), ( ; )) ( )·ln( ( )) d ( )·ln( ( ; )) dn n

(9)

As the parametric IS density appears in the second term only and ∗ xp ( )
is invariant, a minimum of the cross entropy can be found by mini-
mizing only the second part. Substituting Eq. (6) for ∗ xp ( ) in Eq. (9)
results in the following optimization problem [7]:

�
∫=∗ x x v x x x v xD p h I f harg min ( ( ), ( ; )) arg max ( )· ( )·ln( ( ; )) dv v n

(10)

The IS density x vh ( ; ) found by the minimization of ∗ x x vD p h( ( ), ( ; )) is
termed near-optimal IS density. For the efficient evaluation of Eq. (10),
an alternative sampling density x wh ( ; ) is defined, which is of the same
type as the near-optimal sampling density x vh ( ; ). The optimization
program is modified accordingly:

�
∫=

=

∗ x x v x x v x w x w x

x x v x w

D p h I h W h

I h W

arg min ( ( ), ( ; )) arg max ( )·ln( ( ; ))· ( ; )· ( ; )d

arg max E [ ( )·ln( ( ; ))· ( ; )]

v v

v w

n

(11)

In this expression, E [·]w denotes the mathematical expectation with
respect to the alternative sampling density x wh ( ; ), while x wW ( ; ) is the
likelihood ratio of the original sampling PDF to the alternative sampling
PDF:

=x w
x

x w
W

f
h

( ; )
( )

( ; ) (12)

The expectation in Eq. (11) is approximated via IS. With referring to the
i-th sample drawn from the density = …x wh i n( ; ), 1, , s, the solution to
Eq. (11) is approximated by

∑≈∗

=

x x v x x v x wD p h
n

I h Warg min ( ( ), ( ; )) arg max 1 · ( )·ln( ( ; ))· ( ; )v v
s i

n

i i i
1

s

(13)

If Eq. (13) has a global maximum, which is typically the case in
structural reliability [4], this maximum can be found by taking the
gradient with respect to v and setting the result to zero.

According to Eq. (13), obtaining a reliable estimate of the KL di-
vergence requires that a substantial number of samples from x wh ( ; ) fall
in the failure domain. The CE method solves this problem through in-
troducing a series of intermediate failure domains that gradually ap-
proach the target failure domain. In this way, the CE optimization
problem is solved for the optimal IS density of each intermediate failure
domain using samples from the fitted parametric density obtained at
the previous step. The l-th intermediate failure domain and corre-
sponding indicator function are defined as follows:
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