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A B S T R A C T

In applications of reliability analysis, the sensitivity of the probability of failure to design parameters is often
crucial for decision-making. A common sensitivity measure is the partial derivative of the probability of failure
with respect to the design parameter. If the design parameter enters the definition of the reliability problem
through the limit-state function, i.e. the function defining the failure event, then the partial derivative is given by
a surface integral over the limit-state surface. Direct application of standard Monte Carlo methods for estimation
of surface integrals is not possible. To circumvent this difficulty, an approximation of the surface integral in
terms of a domain integral has been proposed by the authors. In this paper, we propose estimation of the domain
integral through application of a method termed sequential importance sampling (SIS). The basic idea of SIS is to
gradually translate samples from the distribution of the random variables to samples from an approximately
optimal importance sampling density. The transition of the samples is defined through the construction of a
sequence of intermediate distributions, which are sampled through application of a resample-move scheme. We
demonstrate effectiveness of the proposed method in estimating reliability sensitivities to both distribution and
limit-state parameters with numerical examples.

1. Introduction

In reliability analysis, the interest is in the assessment of the per-
formance of an engineering system through evaluating its probability of
failure. Let X denote a continuous random vector of dimension n
modeling the system variables that are expected to present an uncertain
behavior. The failure event can be defined as the collection of the
outcomes of X for which the so-called limit-state function (LSF) xg ( )
takes non-positive values.

Consider now a vector θ that collects deterministic parameters that
enter the definition of the reliability problem. The vector θ may contain
parameters of the joint probability density function (PDF) f (.) of X ,
denoted by θd, as well as parameters of the LSF g (.), denoted by θg.
Hence the determinstic parameter vector can be decomposed as

=θ θ θ[ ; ]d g . The probability of failure can be expressed as follows:

∫=
⩽

θ x θ xP f d( ) ( , )
x θf g

d
( , ) 0g (1)

Importantly, the LSF often depends on a computationally intensive
numerical model of the engineering system so that evaluation of the
integral in Eq. (1) becomes a nontrivial task. To alleviate computational
requirements, a variety of tailored approaches have been developed
[1,2]. These include approximation methods such as the first/second
order reliability method (FORM/SORM) [3], response surface

approaches [4] and simulation techniques based on the Monte Carlo
method. All these methods have their merits and disadvantages as
discussed in the literature (e.g. [5–8]).

In this contribution we focus on sampling-based methods. The
Monte Carlo method is a simple and robust technique, that is able to
handle any LSF, independent of its complexity. The efficiency of the
standard Monte Carlo method does not depend on the dimension of the
random variable space. The probability integral of Eq. (1) can be ex-
pressed as the expectation of the indicator function ⩽x θI g( ( , ) 0)g ,
where ⩽ =x θI g( ( , ) 0) 1g if ⩽x θg ( , ) 0g and ⩽ =x θI g( ( , ) 0) 0g

otherwise. Standard Monte Carlo estimates θP ( )f for a given parameter
vector θ by generating ns independent samples = …x k n{ , 1, , }k

s
( ) from

the PDF x θf ( , )d and taking the sample mean of ⩽x θI g( ( , ) 0)k g( ) , i.e.

 ̂ ∑= ⩽ = ⩽
=

x θ x θP I g
n

I gE [ ( ( , ) 0)] 1 ( ( , ) 0)f f
g

s k

n
k g

1

( )
s

(2)

The estimate of Eq. (2) is unbiased and has coefficient of variation:

 =
− θ

θ
δ

P
n P
1 ( )

( )P
f

s f
f

(3)

δPf is a measure of the statistical accuracy of Pf . According to Eq. (3),
crude Monte Carlo requires approximately +10k 2 samples to achieve an
accuracy of  =δ 10%Pf for a probability in the order of −10 k. Hence, the
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computational cost of crude Monte Carlo becomes intractable for low
target failure probabilities. Several methods have been proposed that
aim at enhancing the efficiency of the crude Monte Carlo method
through decreasing the variance of the probability estimate. These in-
clude importance sampling (IS) and its adaptive variants [9–12], line
sampling (LS) [13,14], subset simulation (SuS) [15,16] and sequential
importance sampling (SIS) [17,18].

In many practical applications of reliability analysis, one is inter-
ested in understanding the influence of each component of the vectors
X and θ on the probability of failure. The influence of the random
variables X can be quantified by a variety of sensitivity analysis ap-
proaches, e.g. the FORM sensitivity indices [3] or other variance-based
sensitivity measures (e.g. [19–21]). The sensitivity to deterministic
parameters θ can be quantified through performing parameter studies
for a range of parameter values or through evaluating the local partial
derivative derivatives of θP ( )f to the components of θ. In this paper, we
focus on efficient estimation of the latter.

Approximations of the partial derivative of θP ( )f in terms of both
distribution parameters θd and limit-state parameters θg are obtained as
a byproduct of FORM/SORM solutions [1,22]. They involve the eva-
luation of first- or second-order derivatives of the isoprobabilistic
transformation to the independent standard normal space and the de-
rivative of the limit-state function g (.) to the respective parameters at
the most probable failure point.

The derivative of the probability of failure θP ( )f with respect to a
distribution parameter θi

d is obtained through differentiating the in-
tegrand of Eq. (1) as follows:

∫∂
∂

=
∂

∂⩽

θ x θ
x

P
θ

f
θ

d
( ) ( , )

x θ

f

i
d g

d

i
d( , ) 0g (4)

The expression in Eq. (4) is a (possibly high dimensional) domain
integral and can be estimated using any reliability method including
standard Monte Carlo methods. This has been acknowledged by Wu in
[23], who estimated distribution parameter sensitivities with standard
IS. Other variance reduction methods can also be applied, such as SuS
[24,25] and adaptive IS based on surrogate models [26]. However, it
should be noted that these approaches cannot be implemented in a
transformed random variable space, which is commonly employed for
estimating θP ( )f . This can be understood by considering that when
transforming the random variable space to an equivalent standardized
space (e.g. the independent standard normal space), distribution para-
meters become parameters of the transformed LSF, while the standar-
dized distribution is parameter-free. As discussed next, reliability sen-
sitivities to limit-state parameters are not expressed as domain
integrals. We note that several sampling-based reliability methods
benefit from such a transformation; e.g. it facilitates the choice of ap-
propriate IS functions [2] and it can provide a basis for dimensional-
independent performance of sequential sampling methods [16,27,18].

A different approach was introduced in [19] for the estimation of
distribution parameter sensitivities. The authors constructed a linear
response surface using Monte Carlo samples and applied the FORM
sensitivity results to this surrogate model. It is noted that this approach
can also be applied to evaluate sensitivities to limit-state parameters,
since the latter are also provided as byproducts of FORM.

Consider the case where the LSF x θg ( , )g is continuously differ-
entiable and ∇ ≠x θ 0g ( , )x

g for all x and θg on the surface
=x θg{ ( , ) 0}g . The derivative of θP ( )f with respect to a parameter of the

LSF θi
g is then given by the following surface integral [22]:
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where xds ( ) denotes surface integration over the surface =x θg{ ( , ) 0}g .
Eq. (5) is a surface integral and cannot be estimated with classical
Monte Carlo methods. However, one can estimate Eq. (5) through ap-
plication of simulation methods that monitor the boundary of the limit-

state function. Such methods are the directional sampling [28,29] and
LS [13,14] methods. Both approaches require the solution of a line
search problem for each sample to determine the intersection of the
sampling direction or line with the limit-state surface. Application of
these methods to reliability sensitivity is discussed in [29–32].

Alternative methods for solving the problem of Eq. (5) have been
proposed in [33] and in [34]. The procedure introduced in [33] re-
quires solving the limit-state equation =x θg ( , ) 0g for one component
of x . Estimation of the reliability sensitivity is achieved by conditional
IS in terms of the remaining random variables. The method presented in
[34] involves a linear approximation of the LSF in terms of the para-
meter vector and an approximation of the probability of failure in terms
of the LSF. The approximations are constructed perturbing the limit-
state parameters at the samples close to the failure surface and per-
forming additional LSF evaluations.

In [31], the authors introduced an approximation of the surface
integral of Eq. (5) with a domain integral. This approach allows ap-
plication of any simulation method for estimating Eq. (5). The same
approximation was independently proposed in [35]. Therein, the do-
main integral approximation is estimated with SuS. In [36] this ap-
proach was combined with a polynomial chaos surrogate for efficient
approximate reliability sensitivity analysis. In this contribution, we
propose estimation of the domain integral approximation with SIS [18].
The basic idea of SIS is to gradually translate samples from the dis-
tribution of the random variables to samples from an approximately
optimal importance sampling density. The transition of the samples is
defined through the construction of a sequence of intermediate dis-
tributions. We demonstrate that this sequence is particularly suitable
for estimating the domain integral approximation of Eq. (5). The pro-
posed approach can also be applied for estimating Eq. (4) if estimation
is performed at the independent standard normal space.

The structure of the paper is as follows. In Section 2, we review the
approximation of reliability sensitivity to limit-state parameters
through a domain integral. Section 3 discusses estimation of the ap-
proximation with SIS. Section 4 focuses on application of the proposed
approach to evaluation of reliability sensitivity of system problems with
multiple failure modes. Section 5 tests the proposed method with a
series of numerical examples. The paper closes with the conclusions in
Section 6.

2. Approximate reliability sensitivity analysis

In this section, we derive an approximation of the surface integral
that arises in reliability sensitivities to limit-state parameters through a
domain integral. This approximation, originally introduced in [31],
enables estimation of the surface integral with standard Monte Carlo
methods. We focus on sensitivities to limit-state parameters, i.e. the
case where =θ θg. We note that if the reliability problem is recast in a
standardized probability space through performing an isoprobabilistic
transformation (e.g. [37]), distribution parameters become limit-state
parameters. Therefore, in such settings the methods described here can
be applied to the computation of reliability sensitivities to any de-
terministic parameter.

2.1. Approximation of the surface integral

We derive the approximation of the surface integral of Eq (5)
through considering the following definition of the probability of
failure:


∫= ⩽θ x θ x xP I g f d( ) ( ( , ) 0) ( )f n (6)

where ⩽x θI g( ( , ) 0) is the indicator function of the failure domain and
x θg ( , ) is a LSF that is continuously differentiable almost everywhere

with respect to any component θi of θ. In the above expression, the
dependence of parameters θ enters in the integrand. Therefore, one
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