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A B S T R A C T

This paper proposes a technique for constructing computational models describing the distribution of a con-
tinuous output variable given input-output data. These models are called Random Predictor Models (RPMs)
because the predicted output corresponding to any given input is a random variable. We focus on RPMs having a
bounded support set and prescribed values for the first four moments. This prescription, to be realized by
staircase variables, enables modeling skewed and multimodal phenomena distributed over an input-dependent
interval. Responses with such complex features often arise in structural dynamics. As an example we consider the
reliability analysis of an aeroelastic airfoil subject to flutter instability whose data is corrupted by model-form
uncertainty and measurement noise. Furthermore, we propose a risk analysis methodology to trade-off perfor-
mance against reliability. This example demonstrates that substantial performance improvements are obtained
by (taking the risk of) ignoring a small percentage of the predicted responses.

1. Introduction

Metamodeling [1] refers to the process of creating a mathematical
representation of a phenomenon based on input-output data. Meta-
models can be parametric, e.g., polynomial response surfaces, poly-
nomial chaos expansions, or nonparametric, e.g., Gaussian Process (GP)
models, smoothing spline models, multiplicative regression, Kernel and
additive model regressions. In nonparametric regression the predictor
does not take a predetermined form but is constructed according to
information derived from the data. Nonparametric regression requires
larger sample sizes than parametric regression because the model
structure as well as its hyper-parameters must be inferred. The meta-
models proposed below are nonparametric.

A GP model [2] is a Random Predictor Model (RPM) in which the
predicted output is a normal random variable having input-dependent
mean and covariance functions. GP models are a powerful Bayesian tool
for nonlinear regression, function approximation, and predictive den-
sity estimation. GP models describe the observations as the sum of an
unknown latent function plus a Gaussian noise. Unlike other regression
methods, GPs proceed in a Bayesian fashion to infer the posterior dis-
tribution of the unknown function through the likelihood and a prior
distribution placed over the unknown function. GPs usually employ a
small number of hyper-parameters which are tuned by optimization. GP
models are widely used due to their ability to characterize complex
functional relationships between inputs and output, and to account for
the effects of making predictions away from the range of the data. All
these advantages come with a price: the computational requirements

scale cubically with the number of data points, thereby necessitating
approximations and data reduction when the dataset is large. Further-
more, GPs require making strong assumptions on the perceived noise,
whose power is often considered constant throughout the input space
(i.e., homoscedastic), and on the covariance function of the prior, which
is typically modeled as depending only on the difference between input
values. More importantly, the intrinsic structure of GP models restricts
their applicability to phenomena trending strongly towards bell-shaped,
symmetric and unimodal distributions. This is not the case for Gaussian
Mixture (GM) Models [3,4] and Mixture of Gaussian Process Experts
[5], which enable generating smooth multimodal predictors by com-
bining multiple stationary GPs. However, the learning and inference
operations within such models require simulating the corresponding
process using Markov Chain Monte Carlo making them computationally
expensive to calculate and tune. Furthermore, strong data clustering
often lead to overly complex predictors having unnecessary compo-
nents.

This paper proposes a class of RPMs having the versatility to de-
scribe complex responses typical of engineering systems. Measurement
noise, model-form uncertainty, and parametric uncertainty often lead
to aleatory responses whose features vary strongly with the input
variables. For instance, a flexible structure subject to aleatory un-
certainty in its parameters and initial conditions often renders non-
gaussian time responses. This is also the case of the frequency response
function obtained by experimental modal analysis, in which variations
in the system’s parameters, boundary conditions, and sensor dynamics
yield complex distributions for both the magnitude and phase. The
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complexity of the response often stems from its nonlinear dependency
on the system parameters. This is the case for most linear and nonlinear
dynamical systems. The latter case is exemplified by changes in the
system response caused by bifurcations, e.g., limit cycle oscillations,
buckling phenomena, etc. The proposed RPMs can describe skewed and
multimodal responses by manipulating an outer bound to the range of
the response and its first four moments. Making the prediction match
the observations by adjusting hyper-parameters is a long standing ap-
proach in reliability-based design optimization, moment matching al-
gorithms, and backward propagation of variance [6–8]. The predictors
proposed herein are of the moment-matching type.

This paper is organized as follows. Section 2 presents the problem
statement and main goals of this article. This is followed by a brief
introduction to the staircase variables at the core of the predictor.
Sections 4 and 5 provide a means to calculate interval and random
predictor models based on the available data. Examples describing the
application of the approach to an easily reproducible toy example, its
performance relative to competing alternatives, and its usage in a
structural dynamics application are then provided. Finally, a discussion
section and a few concluding remarks close the paper.

2. Problem statement

A Data Generating Mechanism (DGM) is postulated to act on a
vector of input variables, �∈x nx , to produce one or more outputs, . In
this article the focus will be on the single-output ( =n 1y ) multi-input
( ⩾n 1x ) case. The dependency of the output on the input is arbitrary.
This covers the case in which y is a function of x with all components of
x available (so there is only one output value for each available input),
the case in which y is a function of x but not all components of x are
available (so there might be infinitely many outputs for each measured
input1), and the case in which y is an arbitrary random process of x.
Assume that N Independent and Identically Distributed (IID) input-
output pairs are obtained from a stationary DGM, and denote by
� = = …x y i N{ , }, 1,i i( ) ( ) , the corresponding data sequence. The main
objective of this article is to generate a computational model of a DGM
based on its observations � . Two types of predictors will be developed.
An Interval Predictor Model (IPM) [9,10] yields a bounded interval of
output values at any value of the input. The desired IPM is a narrow
interval that not only contains all the data but it will also contain future
data with high probability. Conversely, a Random Predictor Model
(RPM) yields a random variable at any value of the input. The desired
RPM accurately describes the probability distribution governing the
DGM.

3. Preliminaries

Consider the continuous random variable z with support set
= z zΔ [ , ]z min max , Probability Density Function (PDF) � �⊂ → +f : Δz z ,

and Cumulative Distribution Function (CDF) →F : Δ [0, 1]z z . Denote by
mr the r-th central moment of z, which is defined as

∫= − = …m z μ f z dz r( ) ( ) , 0, 1, 2,r
r

zΔz (1)

where μ is the expected value of z. Note that = =m m m1, 0,0 1 2 is the
variance, m3 is the third-order central moment, and m4 is the fourth-
order central moment.

The random variables at the core of the proposed RPMs are

constrained to have a bounded support set and given values for
μ m m, ,2 3, and m4. The bounded support constraint is given by

⊆Δ Ωz z, where = z zΩ [ , ]z , with ⩾z z. The moment constraints are the
equality constraints in (1). The parameters of these constraints will be
grouped into the variable �∈θz

6 given by

=θ z z μ m m m[ , , , , , ].z 2 3 4 (2)

Any random variable z having a support set contained by z z[ , ] with
moments μ m m, ,2 3, and m4 must satisfy the feasibility conditions

≤g θ( ) 0z given in [11]. The realizations of θ satisfying these conditions
constitute the θ-feasible domain, Θ, defined as

= ⩽θ g θΘ { : ( ) 0}. (3)

Determining membership in Θ is a distribution-free assessment applic-
able to possibly infinitely many random variables. Staircase random
variables [11] are able to realize most of Θ. They are called staircase
because the PDF of its members is piecewise constant over bins of equal
width. Staircase variables are calculated by solving the optimization
program

= ∈
⩾

J θ n A θ n b θ θmin { ( , ): ( , )ℓ ( ), Θ},b b
ℓ 0 (4)

where J is the cost function, nb is the number of bins partitioning Ω , ℓz
are the PDF values at the bin centers, and =A bℓ are moment matching
constraints. This optimization program is convex when the cost J is a
convex function. This is the case for several optimality criteria, in-
cluding maximal-entropy E, and maximum-likelihood L (see Appendix
for details). Hereafter, staircase variables will be denoted as

∼z S θ n J( , , ).z z b (5)

The number of bins nb determines the staircase feasibility of a θ-feasible
point. The staircase-feasible domain is defined as

S = ∈ ∃ ⩾ =n θ A θ n b θ( ) { Θ: ℓ 0| ( , )ℓ ( )}.b b (6)

Hence, the set S n( )b is comprised of all realizations of θ for which an
staircase variable having nb bins exists. Increments in nb rapidly reduce
the size of the offset between Θ and S n( )b . The dependency of the
staircase PDF on the number of bins nb is illustrated in Fig. 1. Note that
the underlying shape of the PDFs is fairly insensitive to the number of
bins. However, Sz becomes infeasible when <n 6b . The influence of the
number of bins is not critical. Numerical experiments indicate that a
density of 100 bins per unit of length yield staircase variables that
match most of Θ .

Staircase variables have the ability to represent a wide range of
density shapes and the low-computational cost required to efficiently
perform many uncertainty quantification tasks. The staircase RPMs
proposed below will be prescribed by making each of the six input
arguments of θ in (2) a function of the input x. The reminder of this
paper focuses on how to set such functions given � .

4. Interval predictor models

This section presents a means to calculate an IPM that tightly en-
closes the data. Such an IPM will later be used to prescribe the support
set of a staircase RPM. Additional information is available in [10].

An IPM assigns to each instance vector �∈ ⊆x X nx a corresponding
outcome interval in �⊆Y . That is, an IPM is a set-valued map,

→ ⊆I x I x Y: ( )y y , where I x( )y is the prediction interval. Depending on
context, the term IPM will refer to either the function Iy or its graph

∈ ∈x y x X y I x{( , ): , ( )}y in ×X Y . A nonparametric IPM is given by

= ⩾I x y x y x y x y x( ) {[ ( ), ( )], ( ) ( )}.y (7)

where the functions y x( ) and y x( ) are the lower and upper boundaries
of the IPM respectively. A parametric IPM is obtained by associating to
each ∈x X the set of outputs y that result from evaluating the para-
metric model =y M x p( , ) at all values of p in the set P, so

= = ∈I x P y M x p p P( , ) { ( , ), }y . Attention will be limited to the case in

1 Consider the two-input single-output DGM y x x( , )1 2 , where y is a deterministic
function of its two inputs. When x1 is the only controllable/measurable input, observa-
tions of the output corresponding to a fixed value of x1 will vary in a range. This variation
is caused by unknown variations of x2. The observed output variation is not caused by
noise per se, but its characterization as noise will almost always require it to be modeled
as heteroscedastic. As such, this is a situation in which the DGM is deterministic but
model-form uncertainty yields seemingly random data.
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