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A B S T R A C T

Polynomial chaos expansions (PCE) have seen widespread use in the context of uncertainty quantification.
However, their application to structural reliability problems has been hindered by the limited performance of
PCE in the tails of the model response and due to the lack of local metamodel error estimates. We propose a new
method to provide local metamodel error estimates based on bootstrap resampling and sparse PCE. An initial
experimental design is iteratively updated based on the current estimation of the limit-state surface in an active
learning algorithm. The greedy algorithm uses the bootstrap-based local error estimates for the polynomial chaos
predictor to identify the best candidate set of points to enrich the experimental design. We demonstrate the
effectiveness of this approach on a well-known analytical benchmark representing a series system, on a truss
structure and on a complex realistic frame structure problem.

1. Introduction

Structural reliability analysis aims at computing the probability of
failure of a system with respect to some performance criterion in the
presence of uncertainty in its structural and operating parameters. Such
uncertainty can be modelled by a random vector �∈X M with pre-
scribed joint probability density function fX . The limit-state function g
is defined over the support of X such that ⩽x xg{ : ( ) 0} defines the
failure domain, while defines the safe domain. The limit state surface
implicitly defined by =xg ( ) 0 lies at the boundary between the two
domains. The probability of failure of such a system can be defined as
[1,2]:

∫=
⩽

x xP f d( ) .
x x XF g{ : ( ) 0} (1)

A straightforward approach to compute the integral in Eq. (1) is to
use of Monte Carlo Simulation (MCS). However, it is often the case that
standard MCS approaches cannot be used in the presence of complex
and computationally expensive engineering models, because of the
large number of samples they require to estimate small probabilities
(typically in the order of ∼ +10k 2 for ≈ −P 10F

k) with acceptable accu-
racy. Well-known methods based on local approximation of the limit-
state function close to the failure domain (such as FORM [3] and SORM
[4]) can be more efficient, yet they are usually based on linearisation
and tend to fail in real-case scenarios with highly non-linear structural
models.

In contrast, methods based on surrogate modelling have gradually
gained momentum in the last few years. Due to the nature of the pro-
blem of estimating low probabilities, most recent methods combine
active-learning-based greedy algorithms with Gaussian process surro-
gate models (Kriging). Among the first works to propose this approach,
the earliest applications in this context were the efficient global relia-
bility analysis method (EGRA) by Bichon et al. [5,6], and the active-
learning reliability (AK-MCS) method based on Kriging by Echard et al.
[7]. More recently, Kriging has been employed to devise quasi-optimal
importance densities in [8,9]. Amongst other variations, polynomial-
chaos-based Kriging has also been used as an alternative metamodelling
technique [10] to overcome some of the limitations of pure Kriging-
based methods. Additional works on the topic of Kriging and structural
reliability can be found, including extensions of the original AK-MCS
algorithm to more advanced sampling techniques [11,12], system re-
liability [13] and for the exploration of multiple-failure regions [14].

Polynomial chaos expansions (PCE) [15] are a well-established tool
in the context of uncertainty quantification, with applications in un-
certainty propagation [16], sensitivity analysis [17] and, to a lesser
degree, structural reliability [18]. While often considered as an efficient
surrogate modelling technique due to their global convergence beha-
viour, PCEs have been employed only seldom in reliability analysis (see,
e.g. [19]) due to their lack of accuracy in the tails of the model response
distribution, which are essential in this field.

In addition, most active-learning approaches with surrogates re-
quire some form of local error estimate to adaptively enrich a small set
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of model evaluations close to the limit state surface. Kriging-based
methods can rely on the Kriging variance for this task, but PCEs do not
provide a natural equivalent.

In this paper, we leverage on the properties of regression-based
sparse-PCE [20] to derive a local error estimator based on bootstrap
resampling. We then use this estimator to construct an active-learning
strategy that adaptively approximates the limit-state function with PCE
by minimizing a misclassification probability-based learning function at
every iteration. The method is then showcased on a standard bench-
mark functions representing a series system and on a complex realistic
frame structure problem.

2. Methodology

2.1. Polynomial chaos expansions

Consider a finite variance model M= XY ( ) representing the re-
sponse of some quantity of interest (QoI) Y to the random input para-
meters �∈X M , modelled by a joint probability distribution function
(PDF) fX . Also consider the functional inner product defined by:

�∫〈 〉 ≡ =
∈

x x x x X Xg h g h f d g h, ( ) ( ) ( ) [ ( ) ( )]
x XΩX (2)

where ΩX represents the input domain. Under the assumption of in-
dependence of the input variables, that is = ∏=xf f x( ) ( )X i

M
X i1 i , one can

representM X( ) as the following generalised polynomial chaos expansion
(see, e.g. [15,16]):

M
�

∑= =
∈

X XY y( ) Ψ ( ),
α

α α
M (3)

where the yα are real coefficients and α is a multi-index that identifies
the degree of the multivariate polynomial Ψα in each of the input
variables Xi:

∏=
=

ϕ XΨ ( ).α
i

M

α
i

i
1

( )
i (4)

Here ϕα
i( )
i
is a polynomial of degree αi that belongs to the family of or-

thogonal polynomials w.r.t. the marginal PDF fXi. For more details on
the construction of such polynomials for both standard and arbitrary
distributions, the reader is referred to [16].

In the presence of a complex dependence structure between the
input variables, it is always possible to construct isoprobabilistic
transforms (e.g. Rosenblatt or Nataf transforms, see e.g. [21]) to dec-
orrelate the input variables prior to the expansion, even in the case of
complex dependence modelled by vine copulas [22]. For the sake of
notational simplicity and without loss of generality, we will hereafter
assume independent input variables.

In practical applications, the series expansion in Eq. (3) is tradi-
tionally truncated based on the maximal degree p of the expansion, thus
yielding a set of basis elements identified by the multi-indices

A∈ ∑ ⩽=α α p: i
M

i1 , with A ≡ = ⎛
⎝

+ ⎞
⎠

P M p
pcard( ) , or using more ad-

vanced truncation schemes that favour sparsity, e.g. hyperbolic trun-
cation [23]. The corresponding expansion coefficients yα can then be
calculated efficiently via least-square analysis based on an existing
sample of the input random vector X = ⋯x x{ , , }N(1) ( ) , known as the
experimental design (ED), and the corresponding model responses
Y = ⋯y y{ , , }N(1) ( ) as follows:

A

∑ ∑= ⎡

⎣
⎢ − ⎤

⎦
⎥

= ∈

y x
N

y yargmin 1 Ψ ( ) .α
α

α α
i

N
i i

1

( ) ( )
2

(5)

When the number of unknown coefficients P is high (e.g. for high-
dimensional inputs or high-degree expansions), regression strategies
that favour sparsity are needed to avoid over-fitting in the presence of a
limited-size experimental design and to make the analysis at all feasible

with a reasonable sample size N. Amongst them, least angle regression
(LARS, [24]), based on a regularized version of Eq. (5), has proven to be
very effective in tackling realistic engineering problems even in rela-
tively high dimensions (i.e. ∼M 100). In this paper, we adopt the full
degree-adaptive, sparse PCE based on hybrid-LARS introduced in [20],
as implemented in the UQLAB Matlab software [25,26].

2.2. Bootstrap-based local error estimation in PCE

2.2.1. Bootstrap in least-square regression
Adopting a least-square regression strategy to calculate the coeffi-

cients in Eq. (5) allows one to use the bootstrap resampling method [27]
to obtain information on the variability in the estimated coefficients
caused by the finite size of the experimental design. Suppose that a set
of estimators θ is a function of a finite-size sample X = ⋯x x{ , , }N(1) ( )

drawn from the random vector X . Then the bootstrapmethod consists in
drawing B new sample sets X X⋯{ , , }B(1) ( ) from the original X by re-
sampling with substitution. This is achieved by randomly assembling
−B times N realizations X∈x i( ) , possibly including repeatedly the same

realization multiple times within each sample. The set of estimated
quantities can then be re-calculated from each of the B samples, thus
yielding a set of estimators = ⋯θ θΘ { , , }B(1) ( ) . This set of estimators can
then be used to directly assess the variability of θ due to the finite size
of the experimental designX , at no additional costs, e.g. by calculating
statistics, or directly using each realization separately. An application of
the bootstrap method combined with PCE to provide confidence bounds
in the estimated PF in structural reliability applications can be found in
e.g. [19,28].

2.2.2. Bootstrap-PCE
We propose to use the bootstrap technique to provide local error

estimates to the PCE predictions. The rationale is the following: the PCE
coefficients yα in Eq. (5) are estimated from the experimental designX ,
therefore they can be resampled through bootstrap. This can be
achieved by first generating a set of bootstrap-resampled experimental
designs X Y = ⋯b B{ , , 1, , }b b( ) ( ) . For each of the generated designs, one
can calculate a corresponding set of coefficients yα

b( ), effectively re-
sulting in a set of B different PCEs. Correspondingly, the response of
each PCE can be evaluated at a point x as follows:

A

∑=
∈

x xY y( ) Ψ ( ),
α

α αPC
b b( ) ( )

(6)

thus yielding a full response sample at each point = ⋯xY b B{ ( ), 1, , }PC
b( ) .

Therefore, empirical quantiles can be employed to provide local error
bounds on the PCE prediction at each point, as well as to any derived
quantity (e.g. PF or sensitivity indices, see e.g. [28,29]).

This bootstrap-resampling strategy in Eq. (6) yields in fact a family
of B surrogate models that can be interpreted as trajectories. Fig. 1
showcases how such trajectories can be directly employed to assess
confidence bounds on point-wise predictions on a simple 1D test
function given by:

= ∈f x x x x π( ) sin( ), [0, 2 ], (7)

where the single random variable is assumed to be uniformly dis-
tributed within the bounds U∼X π(0, 2 ), and where =B 100 bootstrap
samples have been used.

This process of bootstrap-based trajectory resampling to provide
better estimates of point-wise confidence bounds has been recently
explored in the Gaussian process modelling literature, see e.g., [30,31].

We refer to this approach as to bootstrap-PCE, or bPCE in short.

2.2.3. Fast bPCE
Because the training of a PCE model with sparse least-square ana-

lysis may be time consuming, especially in high dimension and/or when
an already large experimental design is available (i.e. ∼N 103), and
because in this particular application we do not need very accurate
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