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A B S T R A C T

In order to adapt civil infrastructure to changing climate conditions, quantifiable and deep uncertainties must be
integrated into the decision-making process. The quantifiable uncertainties, i.e. variability for which a likelihood
can be defined, are typically integrated into the management process by considering the reliability or risk level
of a structure. The deep uncertainties, i.e. the variability for which a likelihood cannot be defined, are beginning
to be integrated in the decision making process as a few robust decision making procedures have been proposed.
However, the deep uncertainty associated with the multiple feasible future climate scenarios also provokes a
“wait and see” mentality for some decision makers, causing the flexibility of a strategy to be valued. This paper
introduces the Gain-Loss Ratio (GLR) as a metric that systematically quantifies what may be gained by post-
poning adaptation while also considering what is lost with the delay. Additionally, bi-objective optimization
models for optimizing bridge adaptation strategies under deep uncertainties are proposed; the advantages and
disadvantages of each are highlighted as they pertain to the management of a typical riverine bridge. Two rivers
are considered that have comparable climate change trends as those predicted for the Columbia and Mississippi
Rivers. It is demonstrated that the desire for flexibility may be justified for certain locations, but may be det-
rimental in others.

1. Introduction

The uncertainties of climatechange increase the difficulties facing
decision makers when it comes to determining optimal adaptation
strategies for civil infrastructure[1–3]. The challenges lie in the efficient
integration of both quantifiable and deep uncertainties while also ac-
commodating the risk attitudes and skepticism of individuals within the
decision making group. The field of adaptation engineering focuses on
ensuring that current and new assets are protected from both near- and
long-term changes in climate conditions [4,5]. It is an active field of
research, with substantial emphasis on managing civil infrastructure
[6–8]. This paper proposes a methodology that balances the benefit of
adapting bridges with the flexibility of a strategy. Additionally, both the
quantifiable and deep uncertainties associated with the climate change
are systematically integrated into optimization formulation.

Quantifiable uncertainties are those for which a probability of oc-
currence is well defined; whereas deep uncertainty refers to instances
where probabilities cannot be agreed upon [4,9]. Examples of quanti-
fiable uncertainties may include those associated with the physical
properties of a structural system, the natural variability of wind, pre-
cipitation, and flooding, and the variability in structural deterioration

processes. The presence of these uncertainties typically precipitate the
use of vulnerability assessment methodologies to evaluate the effec-
tiveness of adaptation strategy. The probability of failure, reliability, or
risk have been integrated in optimization routines in order to determine
optimal strategies [10–14].

Deep uncertainties, those for which probabilities cannot be defined,
may include future economic and/or climate scenarios [15,4]. In the
climate adaptation engineering, deep uncertainties stem from both the
Representative Concentration Pathways (RCPs) used to define green-
house gas trajectories and the Global Climate Models (GCMs) to predict
future climate scenarios. Since no likelihood can be assigned to the
different RCPs [5] and there is no consensus on which GCM is the most
applicable [16], there is no probability that can be objectively assigned
to the occurrence of future climate scenarios. This represents a unique
challenge to decision makers who must either aggregate the future
climate scenarios into one or otherwise account for all potential sce-
narios in the decision-making process.

The deep uncertainties of climate change pose two unique problems.
First, the scenario uncertainty drives a desire for flexibility, as well as
efficiency, in an adaptation strategy. Second, decision makers must
aggregate the future climate scenarios into one, or otherwise account
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for all potential scenarios in the decision-making process.
Typically, the efficiency of an adaptation strategy is quantified by

the benefit, Benefit-Cost ratio (BCR) or Net Present Value (NPV), all of
which have been integrated into the development of management
strategies [11,19]. The benefit of an adaption strategy represents the
reductions in risk achieved by that strategy. BCR and NPV consider both
the benefit for society, and the economic efficiency of the action.
However, some decision makers may also prefer to consider the option
value in a strategy (i.e. the value of the flexibility of the strategy). This
is related to the timing of adaptation: postponing adaptation may allow
the decision maker to observe climate conditions and wait for improved
climate information to become available. This then allows the flexibility
of adapting at a more favorable time or not adapting. While the desire
for flexibility in adaptation strategies has been identified and discussed
qualitatively [4,20,21], there is no systematic methodology for asses-
sing the flexibility of an adaptation strategy as it pertains to the man-
agement of structural assets.

When decision makers have identified the metric with which to
evaluate an adaptation strategy, they must still determine how they are
going to aggregate the performance across all scenarios. Robust opti-
mization models have been developed to find optimal strategies against
potential scenarios without requiring the probabilities of occurrence of
scenarios to be known. Non-probabilistic robust optimization models,
such as maximin or maximax models, consider the performance of the
adaptation strategy against all scenarios without assigning a probability
of occurrence to them [17]. Maximin formulations typically optimize
over the worst-case scenario, while maximax formulations typically
optimize over the best possible scenario. By choosing the formulation of
the problem, the decision makers are predisposing themselves to a
particular preference: maximin and maximax formulations assume a
pessimistic and optimistic outlook on future scenarios, respectively.
Alternatively, a robustness index can be used to assess the variability of
the performance of a strategy across all potential scenarios [9]; thus,
aggregating the response across all scenarios and enabling the use of a
maximization optimization formulation. When optimizing using the
robustness index, the decision makers are not giving preference to any
one scenario, but consider how well the strategy performs across all
scenarios. It implicitly assigns the same probability of occurrence to all
scenarios. Thus, this last model falls into the category of a probabilistic
robust optimization model, i.e. a stochastic optimization model.

This paper proposes a Gain-Loss Ratio (GLR) to account for the
potential gains and the potential losses associated with the delay. This
metric systematically assesses the value in delaying adaptation in order
to achieve a flexible strategy. Furthermore, this paper proposes bi-ob-
jective robust optimization models that simultaneously optimize the
conflicting objectives of efficiency (as defined with the BCR) and the
flexibility (as defined with the GLR). The methodology is applied to two
illustrative examples; both include a typical bridge over a river vul-
nerable to climate changes. The climate change trends in the two ex-
amples are modeled after expected trends in the Mississippi and
Columbia Rivers in the United States in order to identify the effect of
spatial variation of the climate change hazard.

2. Climate change

Natural and anthropogenic factors have forced an overall change in
the climate. Sea level rise, increasingly intense precipitation, and in-
creasingly intense hurricanes are among the major components of cli-
mate change that affect riverine bridges [1,21]. Heat waves, arctic
warming, and increased temperature and humidity may also affect the
life-cycle performance of civil infrastructure [1,22,23]. Together, all of
these aspects define the climate change hazard and may have adverse
effects on the performance of civil infrastructure [5,22]. This paper will
focus on the changes in flooding that accompany the climate change
hazard. Alternative aspects of the climate change hazard may also be
included, but since hydraulic events (including scour, debris impact,

debris accumulation, among others) are the predominant source of
damage to bridges [24], river discharge and flooding are the main
hazards considered herein. It is important to note, however, that the
framework and concepts presented in this paper for the development of
optimal adaptation strategies for riverine bridges can be applied to
other aspects of climate change for other civil infrastructure systems.

The change in flooding is typically described by a change in the
return period of a discharge of a specific magnitude; typically, this is
the discharge associated with the 100-year flood [25–27]. The 100-year
flood discharge under the current climate, denoted herein as Q100, is
associated with a probability of exceedance of 0.01, as shown in Fig. 1.
A statistical analysis of outputs from GCMs at the end of a period of
time provides the probability of exceedance of the Q100 discharge for a
future climate. The climate change is then reported as a change in the
recurrence interval of the 100-year flood; in Fig. 1 the future recurrence
period is denoted as T’.

The predicted climate change effect on flooding varies for different
RCPs and different GCMs. Thus, a set of future recurrence intervals
exists for a specific location rather than a single value. Since no like-
lihoods can be assigned to the different RCPs [5] and no agreement (at
this time) can be made on which GCM is most accurate [16], no like-
lihood can be assigned to the set of future recurrence intervals; the
scenario uncertainty and model uncertainty are both sources of deep
uncertainty.

Hirabayashi et al. [27] provided insight into the changes into the
spatial variation of global flooding. The outputs from 11 GCMs for RCP
8.5 were used to obtain a change in the return period of the 100-year
flood for various rivers across the world. The minimum, 25th percen-
tile, median, 75th percentile, and maximum return periods from the 11
outputs were reported for rivers across all continents. Two rivers in the
United States were reported: the Mississippi and the Columbia. The
expected climate trends in these rivers are detailed in Fig. 2.

The predicted shifts in the return periods for these two rivers
highlight two main points: (1) the variation in GCMs is significant and
may be contradictory. For the Columbia River, 8 out of 11 models de-
termined that the return period would decrease, leaving 3 models
suggesting that the return period would increase [27]. This can also be
interpreted as 8 models indicate an increase in Q100, while 3 indicate a
decrease. For the Mississippi River, 7 out of 11 models determined that
the return period would increase, leaving 4 models suggesting that the
return period would decrease. (2) It is essential to consider the spatial

Fig. 1. The cumulative distribution of discharge for a current and future cli-
mate.
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