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a b s t r a c t

In the scope of infrastructure risk assessment, structural reliability analysis leads to a challenging prob-
lem in order to deal with conflicting objectives: accurate estimation of failure probabilities and compu-
tational efficiency. Since the application of classical reliability methods is limited and often leads to a
prohibitive computational cost, metamodeling techniques (e.g. polynomial chaos, kriging, response sur-
face methods (RSM), etc.) have been widely used. Nevertheless, existing RSM present limitations han-
dling with highly non-linear limit states, large-scale problems and approximation error. To overcome
these problems, this paper describes a cutting-edge response surface algorithm covering the following
issues: (i) dimensionality reduction by a variable screening procedure; (ii) definition of a promising
search domain; (iii) initial experimental design based on an optimized space-filling scheme; (iv) model
selection according to a stepwise regression procedure; (v) model validation by a cross-validation
approach; (vi) model fitting using a double weighted regression technique; (vii) sequential sampling
scheme by exploring a defined region of interest; (viii) confidence interval of reliability estimates based
on a bootstrapping technique. With the aim of proving its efficiency, a wide collection of six illustration
examples, concerning both analytical and FE-based problems, was selected. By benchmarking obtained
results with literature findings, proposed method not only outperforms existing RSM, but also provides
a powerful alternative to the use of other metamodeling techniques.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the increasing need of fulfilling performance and safety
requirements, which can be threatened by potentially hazardous
events, risk and reliability assessment are a task of utmost impor-
tance in many complex engineering applications [1]. In this regard,
both aleatory and epistemic uncertainty play an important role and
their effects must be carefully treated. Aiming at studying the
propagation of uncertainties, probabilistic approaches coupled
with advanced numerical models are often required. In structural
engineering’s field, reliability assessment is a challenging task, par-
ticularly for complex structures with small failure probabilities [2–
4]. On the one hand, to reproduce important structure behaviour’s
features, non-linear finite element analysis models may be
required. On the other hand, computational costs increase substan-
tially due to numerical model’s complexity. In this context, a sig-
nificant research focus has been placed at evaluating failure
probabilities keeping computational effort at a reasonable level.

In structural reliability analysis, failure probability with respect
to a limit state described by a performance function GðxÞ, repre-
senting the system response of interest, is computed by the follow-
ing n-fold integral:

Pf ¼ PfGðxÞ 6 0g ¼
Z
GðxÞ�0

f xðxÞdx ð1Þ

where x describes an n-vector of basic input random variables with
its joint probability density function f xðxÞ and GðxÞ � 0 defines a
failure event or state.

Unfortunately, failure probability evaluation in Eq. (1) is hin-
dered by two major hassles: joint probability density function
f xðxÞ is unknown and the integration domain is defined implicitly.
Hence, several probabilistic reliability methods have been devel-
oped in the past few decades [2–4]. Basically, these methods can
be roughly classified into three different groups of increasing com-
plexity: approximate or gradient-based methods, simulation or
sampling-based methods and metamodeling-based methods.
Herein, basic principles of the most important methods are briefly
introduced.
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With respect to approximate methods, two of the most com-
monly used approaches are the so-called FORM and SORM (first
and second order reliability methods). Basically, failure probability
computation is facilitated by means of a three-step procedure: (i)
simplification of the integrand f xðxÞ through a transformation
operation, in which random variables are mapped into a standard
normal space u; (ii) approximation of the integration boundary
GðuÞ ¼ 0, based on a Taylor series expansion; (iii) determination
of the ‘‘design point” through a search algorithm (or ‘‘most proba-
ble failure point” (MPFP), which is the point with the highest prob-
ability density on the limit state function (LSF) GðuÞ ¼ 0). With the
aim of yielding a good computational performance, several opti-
mization algorithms have been developed [5]. However, these
methods present a few important drawbacks [2,3]: (i) gradients
and Hessians may not be easily available; (ii) in the case of highly
non-linear limit states at u-space, linear approximation given by
FORM can substantially compromise accuracy, which might be
slightly improved by SORM; (iii) in failure probability estimation,
approximation errors are not taking into account; (iv) in case of
large-scale problems, finite difference scheme usually adopted to
compute finite element response’s gradients may affect severely
the computational effort.

As for simulation-based methods, these comprise both crude
and more advanced Monte Carlo (MC) schemes based on variance
reduction techniques, such as, importance sampling (IS) and its
variants [6,7], line sampling [8,9], directional sampling [10,11],
Latin hypercube sampling (LHS) [12,13], subset simulation (SS)
[14,15]. Although crude MC is the most robust approach to solve
the integral in Eq. (1), its computational cost, when dealing with
time-demanding performance evaluations and/or very reliable
engineering systems, may be considered as prohibitive. Variance
reduction techniques can efficiently improve MC estimators by
exploring the vicinity of failure region. However, the reduction of
performance evaluations still remains insufficient [16,1,17].

Aiming at overcoming these inefficiencies, metamodeling-based
methods provide an interesting solution to enhance reliability anal-
ysis’ efficiency by replacing the true performance function GðxÞ
with a metamodel (or surrogate model) bGðxÞ, which is incompara-
bly faster to be evaluated. In general, a metamodel is constructed
from a collection of known input–output pairs, which constitute
the so-called experimental design (ED). Various methodologies
have been proposed by exploiting different kind of metamodels,
such as polynomial response surfaces (RS) [18–25], polynomial
chaos expansions (PCE) [26–28], artificial neural networks [29–
32], support vector machines [33–35], kriging [36–38,17,39,40],
among others. Regardless of the metamodel, these iterative
methodologies consist of the following steps: (i) application pur-
pose; (ii) metamodel goal; (iii) experimental design strategy; (iv)
model fitting; (v) model validation; (vi) failure probability evalua-
tion; (vii) model updating until convergence is reached. Indeed,
both accuracy and efficiency strongly rely on how these issues are
addressed. Aiming to facilitate comprehension and comparison
between existing approaches, the most efficient methods for each
kind of metamodel are roughly reviewed and compared in Table 1,
according to their chronological order.

In agreement with this literature review, by taking advantage of
its exact interpolation method and efficient active learning
methodologies, kriging-based are the most efficient methods
which have been largely improved during the last few years
[37,38,17,39,40]. However, its practical implementation is not a
straightforward task [36], since it requires special knowledge of
statistics and optimum learning functions. In fact, this intensive
research effort attempts to overcome the limitations of both classi-
cal and adaptive RSM. In spite of being less efficient than kriging-
based methods, quadratic RS are still the most popular metamod-

els due to its compromise between practical applicability and effi-
ciency. However, RS approaches suffer from the ‘‘curse of
dimensionality”, which is discussed in Section 2.1.

The main difference between kriging and RS as metamodels lies
in their aim/goal, since two broad procedures can be followed [41]:
regression or classification approach. On the one hand, regression
technique uses a collection of statistical tools to mathematically
model (e.g. quadratic RS, PCE) non-deterministic relationships
between response of interest and explanatory variables. Depending
on how these models are built, global interpolation accuracy may
be compromised. On the other hand, even though classification
procedure also investigates those relationships, its main focus is
to identify and cluster different classes or categories among obser-
vations by means of statistics, machine learning or neural net-
works approaches. Mostly kriging-based methodologies
understand reliability problem as a classification task, which is
interested in classifying samples as either safe or unsafe depending
on their location [41].

One of the keys to the success of a metamodeling-based method
is the combination of metamodel’s merits with an sequential
experimental design strategy. This strategy must guide experi-
ments to explore the design space of interest, which is examined
in Sections 2.2 and 2.6. Generally, a sequential (or adaptive) proce-
dure starts with an initial ED, which is successively enriched by
additional training points until a stopping or convergence criteria
is fulfilled. Numerous design of experiments techniques can be
found in literature (see [42,16]), such as, star-shaped, factorial,
central composite, space-filling designs (e.g. low-discrepancy
sequences, LHS), optimal-design, among others. However, their
sample size grows quickly with problem dimension, which directly
affects the computational effort needed. This obstacle is addressed
in Section 2.3.

Furthermore, with regard to RS methods, structural reliability
estimates are strongly influenced by the choice of both their poly-
nomial form and experimental design scheme [43]. To tackle this
shortcoming, weighted regression approach [22], re-sampling
technique to achieve design point’s confidence area [27], sampling
method based on partial derivatives of RS with respect to random
variables [23], nested LHS designs [25] and moving-least squares
approximations [44] have been developed. Herein, a double
weighted technique to improve fitting accuracy near failure surface
is presented in Section 2.5.

As for other metamodels, the majority of the approaches define
an initial ED as equal to a Monte Carlo sample and additional sub-
sequent promising training points are often selected according to
learning functions [45,46] or by means of Monte Carlo Markov
Chains (MCMC) algorithms [47], which depend on the previously
selected initial design that might be updated.

Although the development of adaptive and refinement strate-
gies coupling sampling-based methods with metamodeling has
been widely studied, model validation and error propagation has
not received much attention by the research community [17].
Indeed, evaluating metamodel predictability during validation
stage is an essential step to ensure an adequate ‘‘degree of belief”
about its use [48]. Despite some effort in this regard (see Table 1),
the estimation of prediction error given by leave-one-out cross-
validation (LOOCV), which is the simplest form of exhaustive
cross-validation (CV), presents high variance due to the large over-
lap of training folds. Hence, aiming to achieve a better bias-
variance trade-off: 10-fold CV or 10-times 10-fold CV may be
preferable [49]. In this regard, a model validation procedure is
highlighted in Section 2.4.

Beyond the estimation of metamodel’s prediction error, its
influence on reliability analysis estimates is also an issue of great
importance. With the aim of assessing metamodel prediction
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