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a b s t r a c t

A radial basis function (RBF) based sequential surrogate reliability method (SSRM) is proposed, in which a
special optimization problem is solved to update the surrogate model of the limit state function (LSF)
iteratively. The objective of the optimization problem is to find a new point to maximize the probability
density function (PDF), subject to the constraints that the new point is on the approximated LSF and the
minimum distance to the existing points is greater than or equal to a given distance. By updating the
surrogate model with the new points, the surrogate model of LSF becomes more and more accurate in
the important region with a high failure probability and on the LSF boundary. Moreover, the accuracy
of the unimportant region is further improved within the iteration due to the minimum distance con-
straint. SSRM takes advantage of the information of PDF and LSF to capture the failure features, which
decrease the samples of implicit LSF defined by expensive finite element analysis. Several numerical
examples show that SSRM improves the accuracy of the surrogate model in the important region around
the failure boundary with a small number of samples and has a better adaptability to the nonlinear LSF,
hence increases the accuracy and efficiency of the reliability analysis.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In engineering design, when uncertainties are involved, the
failure probability Pf of the limit state function (LSF) g(x) should
be examined. Pf is essentially a multi-dimensional integral
formulated as

Pf ¼
Z Z

� � �
Z
D
pðxÞdx1dx2 � � �dxm ð1Þ

where D is the failure region defined as D ¼ fxjgðxÞ 6 0;x 2 Rmg,
and p(x) is the joint probability function. The numerical integral
and direct Monte Carlo Simulation (MCS) are difficult for a complex
system with implicit time-consuming analysis models. To calculate
the integral with the original LSF faces enormous computational
challenges [1–2]. Therefore, different approximations of the LSF
are adopted to improve the computational efficiency of reliability
analysis.

The mean value method (MVM) [3–4] performs a first-order
Taylor expansion of the LSF at the mean point (as shown in
Fig. 1), in which the LSF is assumed to be normal distribution.

The MVM is one of the most efficient reliability methods. However,
it requires the independent input variables obey normal distribu-
tion, which is difficult to be satisfied in practical problems. More-
over, the approximation error increases with the increase of the
nonlinearity. Therefore, this method is appropriate for fast estima-
tion of the structural reliability with low nonlinearity.

The first-order reliability method (FORM) [5–8] transforms
random variables with different distributions into the same
standard normal space U by Rosenblatt transformation [9] and
then performs a first-order Taylor expansion at the most probable
point (MPP) which has the maximum failure probability on the LSF
(as shown in Fig. 1). Eventually, the normal distribution
parameters (mean value and standard deviation) of LSF are figured
out with the gradient of the approximation function, and then the
failure probability is obtained analytically. Compared with the
MVM, the FORM does not require the input variables to obey nor-
mal distribution and has a higher accuracy with the LSF expanded
at the MPP. However, the optimization with an equality constraint
to find the MPP increases the number of the LSF evaluations.
Moreover, it increases the nonlinearity of the LSF g(x) during the
Rosenblatt transformation, thus the approximation error is large
when the nonlinearity of LSF is high [10–11].

https://doi.org/10.1016/j.strusafe.2018.02.005
0167-4730/� 2018 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: jingzhao.behunters@mail.google.com (Z. Jing).

Structural Safety 73 (2018) 42–53

Contents lists available at ScienceDirect

Structural Safety

journal homepage: www.elsevier .com/ locate/s t rusafe

http://crossmark.crossref.org/dialog/?doi=10.1016/j.strusafe.2018.02.005&domain=pdf
https://doi.org/10.1016/j.strusafe.2018.02.005
mailto:jingzhao.behunters@mail.google.com
https://doi.org/10.1016/j.strusafe.2018.02.005
http://www.sciencedirect.com/science/journal/01674730
http://www.elsevier.com/locate/strusafe


The second-order reliability method (SORM) [7,12–13] is simi-
lar to the FORM. First, the input random variables are transformed
into the standard normal space U to get the LSF G(u). Second, G(u)
is expanded with second-order Taylor expansion at the MPP to
obtain a quadratic hypersurface. Finally, the reliability of the
approximate model is analyzed with analytical methods [10]. The
SORM has a higher nonlinear adaptability than the FORM, but it
needs to perform the time-consuming second-order gradients.
Moreover, the adaptability to nonlinear boundary is still limited
[10–11].

The response surface is a different commonly used reliability
analysis method [14–16]. By sampling in the neighborhood of the
design point, the local approximation model of LSF is constructed.
Since the response surface model evaluation time is far less than
that of the original LSF, it is possible to use the approximate model
for Mont Carlo Simulation (MCS) or Importance Sampling (IS)
[17–19]. However, since the accuracy of the response surface
method is poor with numbered samples, the complex structural
behavior might not be captured. When considering factors such
as the failure boundary and probability density, more samples
are required to improve the local accuracy. Therefore, iterative
response surface reliability analysis methods are proposed
[20–30], which increases the samples in the important region near
the MPP, and gradually improves the accuracy of the approxima-
tion model. This type of iterative method is also known adaptive
or active learning method [31–32,45]. In general, the response sur-
face approximation model can be replaced by other surrogate
model (also known as meto-model) techniques such as radial basis
function (RBF), Kriging, support vector regression (SVR), artificial
neutral net (ANN), etc. [18,33–44]. The existing methods converge
in a local region after increasing the sample density of the impor-
tant region in some degree, but the accuracy does not increase in
the less important region.

In order to make full use of the information of the added sam-
ples to improve the approximate accuracy of the important and
less important region, this paper proposes a sequential surrogate
reliability method (SSRM) based on RBF. By adding points sequen-
tially to the surrogate model, the failure features in the important
region and on the boundary of the LSF are captured, and the failure
probability is obtained with MCS by using the surrogate model.
SSRM does not need to use the original LSF to search for MPP
directly, but rather becomes close to the important area near
MPP in the process of adding points, thus reducing the number
of sample evaluations and avoiding the failure to find the optimal
solution. Meanwhile, the SSRM method makes a trade-off between
precision and computational cost.

The remainder of this paper is structured as follows. Section 2
introduces the surrogatemodel technology used in SSRM; Section 3
describes the implementation process of SSRM, and analyzes its
characteristics; Section 4 verifies the effectiveness and efficiency

of SSRM with several numerical examples; conclusions are given
in Section 5.

2. Surrogate model

2.1 Construction of surrogate model

The goal of the surrogate model is to construct a prediction
model of a complex or unknown model with the observation sam-
ples. Instinctually, surrogate model is an interpolation or regres-
sion model, which is also a branch of machine learning [47]. The
common surrogate models include polynomial response surface
method (PRSM) [48–49], radial basis function (RBF) [48–49], Krig-
ing [50–52], support vector regression (SVR) [50–52] and artificial
neutral net (ANN) [53]. Since RBF has good nonlinear adaptability
and is easy to implement, this paper constructs the sequential sur-
rogate model with RBF. Assume that the observation samples are
presented as

S ¼ fðxi; yiÞji ¼ 1;2; . . . ;ng ð2Þ
denoted by a matrix form

X ¼ ½x1;x2; . . . ;xn�T

y ¼ ½y1; y2; . . . ; yn�T
ð3Þ

where n is the sample size, X denotes the input sample matrix, y is
the output sample vector. x is an m-dimensional design variable.
RBF uses a series of linear combinations of radial basis functions
to approximate the expensive limit state function, which can be
formulated as

byðxÞ ¼Xn
i¼1

bifðkx� xikÞ ¼ fðxÞTb ð4Þ

where ŷðxÞ denotes the predictive response at point x, bi is the ith
component of the radial base coefficient vector b, and fðkx� xikÞ
(see Table 1) is the ith component of the radial basis function vector
fðxÞ. As shown in Table 1, r ¼ kx� xik is the Euclidian distance
between two samples, and c is the shape parameter.

Substitute the samples of Eq. (2) into Eq. (4),
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Rewritten as a matrix form

y ¼ Fb ð6Þ
As the samples are different with each other, F 2 Rn�n is a non-

singular matrix, and Eq. (6) has a unique solution b ¼ F�1y. Thus
the prediction model is given by

byðxÞ ¼ fðxÞTF�1y ð7Þ
where f(x) is related to the prediction point x and sample input
matrix X; F�1y is only related to X and y. For a new prediction
sample x, f(x) is calculated one time to get its predicted valueŷðxÞ.

Table 1
Radial basis functions.

Type Function form fðrÞ
Gaussian expð�cr2Þ
Inverse Multiquadric ð1þ cr2Þ�1=2

Thin plate spline r2logð1þ cr2Þ

Failure Region g(x) 0

Safe Region g(x)>0

LSF g(x)=0

x1

x2

O

LSF G(u)=0

u1

u2

O

||u*||

MPP u*

Original Design Space X Standard Normal Space U

μ GFORM(u)=0

GSORM(u)=0
gMVM(x)=0

Fig. 1. Approximations of LSF in X and U space.
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