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The problem of time variant reliability estimation of structural dynamical systems subjected to nonsta-
tionary, Gaussian, random excitations is considered. The system equations are cast in the form of Ito’s
stochastic differential equations and the problem of reliability estimation is tackled based on Monte
Carlo simulations with a Girsanov transformation based sampling variance reduction scheme. The prob-
lem of time variant reliability analysis is first cast as an equivalent problem in series system reliability
analysis. Novel contribution of the work lies in proposing procedures to arrive at state dependent (closed
loop) Girsanov's controls. Suboptimal Girsanov’s controls for estimating the time variant reliability are
derived based on component level ideal controls, which are exactly obtainable for linear systems, and,
via a local linearization step for nonlinear systems. It is shown that a simplified version of the above
closed loop controls, that avoids linearization step for nonlinear systems, can be deduced by minimizing
a distance measure similar to what has been done for arriving at open loop controls. Illustrations on
multi-degree of freedom linear/nonlinear systems demonstrate the superior performance of the proposed
method vis-a-vis the existing open loop control based methods. Limited largescale Monte Carlo simula-
tions are used to verify the acceptability of solutions based on the proposed scheme.
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1. Introduction vector models for response processes and tackle the problem of

reliability through the use of the backward Kolmogorov equations

Problems of time variant reliability estimation in randomly dri-
ven structural systems are widely encountered in earthquake,
wind, and automotive engineering. Here, one considers the
response vector X(t) of the system and aims to determine the reli-
ability Ps = P[h[X(t)] < h",Vt € [0, T]], which is the probability that
a scalar function h[X(t)] of the response vector X(t) stays below a
specified threshold h” for all times in the interval [0, T]. Here P[]
denotes the probability measure. The complement, Pr=1 — P,
denotes the probability of failure. An exact solution to this problem
is rarely possible and the complexity of the problem increases as
one deals with strong structural nonlinearity, large state-space
dimensions, nonstationary and (or) non-Gaussian excitations,
parametric excitations, randomness in system parameters, and
nonlinear nature of the performance measure h[X(t)]. Approximate
analytical/combined analytical-numerical approaches include
those based on counting the number of times a specified level is
crossed by a random process [1-3], those which adopt Markov
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[4-7], and methods based on probability density evolution method
[PDEM] and extreme value theory [8-13]. The following points
may be noted in this context:

(a) The methods based on counting level crossings employ Pois-
son/Markovian models for the level crossings and the under-
lying approximations are valid only in an asymptotic sense.
When applied to nonlinear systems, this approach typically
requires the application of equivalent linearization or clo-
sure approximations [1,14].

(b) The methods based on the application of backward Kol-
mogorov equation are feasible to be applied only for low
dimensional systems.

(c) The PDEM is more generally applicable, but, is not suited to
treat excitations which are modeled as white noise or fil-
tered white noise processes. Such representations for loads
are often employed in engineering problems [15]. This
approach does not take advantage of the extensive knowl-
edge base that is available in the existing literature on the
theory and applications of Markov processes.
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The Monte Carlo simulation based methods, on the other hand,
are eminently suited to handle the above mentioned complexities.
These methods, however, need to be reinforced with suitable
strategies to control the sampling variance, in the absence of which,
the methods prove to be infeasible, especially, when dealing with
estimation of probabilities associated with rare events, such as,
structural failures. The simulation methods can be broadly grouped
into two categories: the first which begin by discretizing the ran-
dom excitations into a set of equivalent random variables and sub-
sequently perform the reliability calculations in the space spanned
by these discretized set of random variables [16-21] and, the sec-
ond, which work with time trajectories of the response/excitation
processes [22-25]. In the first approach, the time variant problem
gets converted to an equivalent static/time-invariant reliability
problem which is subsequently tackled using importance sampling
methods or Markov chain Monte Carlo techniques. Here, the diffi-
culty arises when the dimension of the random vector increases
due to the large number of random variables entering the formula-
tion, and one has to devise special sampling strategies to tackle this
issue. The second approach, on the other hand, is bereft of such
complexities and requires one to develop techniques to artificially
manipulate the response trajectories h[X(t)] during simulation to
drive them towards the failure region.

Among the second class of methods, those based on applying
the Girsanov’s transformation of probability measure are mathe-
matically well-founded [26-28]. Here, the governing equation of
the dynamical system is cast as an Ito’s stochastic differential
equation (SDE) and the response trajectories are nudged towards
the failure region through the addition of artificial control forces
in the dynamical system. The process leads to a change in the
underlying probability measure which is accounted for by intro-
ducing a correction term in the failure probability estimator.
Although there exists an ideal control resulting in a zero sampling
variance failure probability estimator [27], deducing it becomes
infeasible as it requires knowledge of Pg, the very quantity we
are trying to estimate. Hence, existing studies have focused on
development of suboptimal controls. Tanaka [22] and Macke and
Bucher [25] have obtained suboptimal controls for the time variant
reliability problem by minimizing a distance function, as in the
first order reliability methods [29]. The study by Schoenmakers
et al. [30], proposes an application of the Kolmogorov backward
equation to obtain the controls. Olsen and Naess [31] have devel-
oped an iterative procedure, based on design point oscillations
and optimal stochastic control theory, to obtain suboptimal Gir-
sanov’s controls for single-degree of freedom (sdof) oscillators.
Strategies to design the control forces using ideas from critical
excitations [32,33] and through stochastic optimization [34], by
solving the Bellman equation, have been studied by Au for the case
of sdof elasto-plastic oscillators. It may also be noted that studies
reported in references [31-34] consider only sdof oscillators under
stationary Gaussian excitations. In recent years, methods for Gir-
sanov’s transformation based time variant reliability analysis of
randomly parametered nonlinear systems [35], time variant sys-
tem reliability analysis via vibration testing [36], and reliability
model updating [37] have also been developed.

Most of the above mentioned studies have employed open loop
(state independent) Girsanov’s controls which, by their very nat-
ure, are pre-computed and deterministic. These controls cannot
adapt their actions according to the random behavior of the
dynamical system under consideration. It is important to note that
the ideal (zero sampling variance) control, stated above, is a closed
loop (state dependent) control and is stochastic in nature. Thus, it
appears that the open loop controls, because of their deterministic
nature, have limited potential to approach the ideal controls no
matter with what detail they are designed. With this in mind,
the present study explores strategies to devise closed loop controls

for estimating time variant reliability with reduced sampling vari-
ance. Specifically, we propose two alternatives to tackle the prob-
lem: one that builds on the form of the ideal controls, and, the
other, which is a simplified version valid for random excitation
intensity asymptotically approaching zero. Illustrations include
studies on multi-degree of freedom (mdof) systems under nonsta-
tionary, multi-component random excitations. The trustworthi-
ness of the results obtained, based on the proposed procedure,
has been examined using pertinent results from direct Monte Carlo
simulation.

2. Objectives of the present study

We consider the class of dynamical systems which are governed
by Ito’s SDE of the form

dX(t) = AX(t), t)dt + 6[X(t), )dB(t); X(0) =Xo; 0<t<T (1)

Here X(t) is a p x 1 vector of system states, A[X(t), t] is the p x 1
drift vector, o[X(t),t] is the p x g matrix of drift coefficients, and
B(t) is a gx1 vector of Brownian motion processes with
Ep[AB(t)] = Ep[B(t + At) —B(t)) =0  and  Ep[ABi(t;)AB;(t,)] =
CyjAté(t; —ty) for 0<t1,tb<T and ij=1,...,q. We write
Cyj = p;/SiS; where S;,i=1,...,q, denote the intensities of the
underlying Gaussian white noise processes and the correlation
coefficients p; satisfy |p;| < 1. The initial condition in Eq. (1) is
assumed to be deterministic. We denote by (Q, #,P) the underly-
ing probability space, and by Ep[-] the expectation operator with
respect to the probability measure P. In the context of finite ele-
ment models for structural systems, this equation is taken to be
obtained by recasting the semi-discretized equations resulting
from discretization in space. The class of systems represented by
this model is quite general: it can accommodate nonlinear systems,
nonstationary, non-white and (or) non-Gaussian excitations, and
parametric and (or) external excitations. In case of non-white exci-
tations, the forcing functions are obtained as outputs of additional
filters which are driven by white noise excitations. In such cases,
the system state vector X(t) includes additional state variables
associated with the augmented filter equations. Furthermore, by
making these filters nonlinear in nature, one can allow for excita-
tions to be non-Gaussian.

A scalar measure of system performance, denoted by h[X(t)],
and a corresponding permissible threshold h*, are now introduced.
This function, for example, could be in terms of allowable limits on
displacements, reactions transferred, or stress metrics. The prob-
lem of time variant reliability consists of evaluating

Pr =1 —P[R[X(t)] < h*Vt € [0,T]]
=P Hh - (rE%h[X(t)] < OH (2)

which is the probability of occurrence of the failure event
F= {h* - (r)nraéh[X(t)] < 0}. According to the method of Girsanov’s
transformation [28], in order to obtain a variance reduced estimator
for Pr, we modify Eq. (1) by introducing an additional control force
leading to the modified equation

dX(t) = A[X(t), t} dt+o [X(t), t]u P((t)., t] de

o[)?(t), t} dB(t); X(0) = Xo,0 <t <T 3)

where, u[X(t), t] is the g x 1 vector of control force and B(t) is an

Ito’s process given by

dB(t) = —u[f((t), t]dt +dB(t); B0O)=0: 0<t<T (4)
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