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a b s t r a c t

A probabilistic approach to decision-optimal design and damage control is developed for structural sys-
tems that can gradually accumulate damage by nonlinear behavior under sequences of dynamic loads,
whose occurrence can be idealized by renewal stochastic processes. To minimize consequences and dam-
ages during the life cycle of a structure, a damage threshold is established as a measure of damage con-
trol. If structural damages are lesser than such a damage threshold the structure is not repaired,
otherwise the structure is repaired or rebuilt. The proposed approach is generalized and capable of
describing particular cases for the optimization of expected losses. One of them is the well-known case
used as a basis for many current design criteria in which it is assumed that the structure is repaired or
rebuilt systematically after some damage or failure. The present work extends the ideas and models
reported in several seminal papers. However, the proposed approach has the advantage that it takes into
account cumulative structural damage over time, allows evaluating objectively the cost of damages and
sets an optimum repairing damage threshold. Finally, the probabilistic formulation is illustrated through
its application to a building subjected to sequences of earthquakes.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

It is now recognized that design codes should ethically generate
optimal designs for society in the sense that they have to consider
protecting people and property [1]. A useful tool to achieve this
goal is decision theory [2,3]. On the basis of this theory and accord-
ing to the annals of UNAM (National University of Mexico) in 1968,
Esteva [4] proposed the first model of design decisions for struc-
tures subjected to cyclic loads (earthquakes) that occur sporadi-
cally according to a stochastic Poisson process. Later on, between
1971 and 1974, Rosenblueth and Mendoza [5], Rosenblueth [6]
and Hasofer [7] generalized the ideas of [4], by considering that
loads are generated according to a stochastic renewal process, in
which the Poisson process is only a particular case. In these works,
the optimization (minimizing the present value of expected losses
or maximizing benefits) is carried out by taking into account only
initial and failure costs, because the formulation is related exclu-
sively to a failure model. These kinds of models consider the con-
tributions to total losses of all failure events occurring over time,
since the structure is rebuilt each time it fails. Then, in 1976,
Rosenblueth [8] additionally considered explicitly the inclusion

of the expected damage losses conditioned on the structural sur-
vival. Long after, in 2000, Rackwitz [9] took the Rosenblueth’s
and Hasofer’s approach [5–8] and made some improvements to
the model, but without considering the damage and the associated
damage costs conditioned on the structural survival. However, in
other works [10–12] damage and repair costs are taken into
account in the optimization process. This kind of model, based
on renewal process, has been used by some researchers to perform
engineering applications in the optimization of structural systems
[13–16].

A fundamental assumption in all these works indicate that ‘‘the
structural capacity is immediately restored after each load event
causing damage”, which implies that the failure probability for
uncertain load events is constant and even those damages that
are not identified or visible are repaired. This means that there is
no cumulative damage and every time that the structure is
exposed to the next load its capacity remains intact. This assump-
tion is also the backbone of modern structural design codes,
because the design criteria refer to the behavior of structural sys-
tems with intact mechanical properties subjected to dynamic loads
with different probabilities of occurrence. Codes do not explicitly
take into account changes in the vulnerability of the structure dur-
ing its service life, let alone specify acceptable damage thresholds.
The above assumption has the advantage that mathematical anal-
ysis leads to simple analytical models and results. However, in
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engineering practice the repair or rebuild decisions are made from
an assessment of structural integrity, and in many cases this
assessment is virtual and subjective. Therefore, the assumption
of systematically repairing or rebuilding the structure at any level
of damage after each load event is difficult to satisfy, whereas in
other cases, it may be appropriate.

On the other hand, under this kind of approach, neither the
damage probabilities are estimated from an explicit formulation
nor the damage costs are explicitly estimated for given levels of
damage. For this reason, the damage costs are estimated roughly,
typically associated with a load intensity indicator. Apparently,
only the initial costs and expected consequences due to structural
failures are described adequately, because the stochastic formula-
tion [4–7,9] only considers the failure condition, meanwhile the
probability of damages and damage costs related to the structural
survival associated with each load are not explicitly considered.

This paper describes an explicit and generalized probabilistic
formulation to make decisions for design and damage control of
structural systems whose structural vulnerability can change dur-
ing its planned service life due to the impact of stochastic loads
with uncertain intensities. The development follows the ideas of
the above mentioned seminal papers [4–9]. The first part of this
work outlines the basic stochastic characteristics useful to describe
the evolution of damage in structural systems. After this, a gener-
alized formulation and a particular case are described to quantify
the present value of the expected losses of structures with cumu-
lative damage. Finally, the proposed formulation is applied to a
reinforced concrete building subjected to seismic sequences.

2. Stochastic properties of cumulative damage

This section outlines the basic stochastic properties to develop
the generalized optimization model presented in the next sections.
In this work we focus only on the probability density functions of
the time to the n-th, n ¼ 1;2; . . ., exceedance of a given damage
threshold.

2.1. Probability functions of the time to the n-th exceedance of a given
damage threshold

Cumulative damage over time t is described by the random
function DðtÞ; it takes values in the interval [0, 1]. DðtÞ ¼ 0 indi-
cates nonstructural damage and DðtÞ P 1 indicates total damage.
DðtÞ is represented as the sum of random increments of damage
DDnð�; �Þ, as follows

DðtÞ ¼
XNðtÞ
n¼1

DDnðt � Sn;YnÞ ð1Þ

Nð�Þ describes the cumulative numbers of load events that have
impacted the structure over time through a stochastic renewal
process [17]. Damage increments DDnð�; �Þ, n ¼ 1;2; . . . are random
variables that quantify on a dimensionless uniform scale [0, 1] the
potential structural degradation each time that the structure is
subjected to a dynamic load. Sn denotes the random variable of
the time to the occurrence of the n-th load with intensity Yn ¼ Y ,
also treated as a random variable. Here f Yð�Þ is the probability den-
sity function of the intensities of dynamic loads. The probability
p½��, that at time t, Dð�Þ exceeds a given value of d, can be written as

p½DðtÞ > d� ¼
X1
n¼1

pnðtÞp
Xn
i¼1

DDiðt � Si; YiÞ > d

" #
ð2Þ

For conciseness, DDi ¼ DDið�; �Þ and Dn ¼ Pn
i¼1DDi. Furthermore,

Dn ¼ DDi ¼ 0 if d < 0. Thus, the damage Dn at the n-th occurrence
can be expressed as Dn ¼ Dn�1 þ DDn. According to this,

p½Dn > d� ¼
Z d

0
p DDn > d� x xj½ �f Dn�1

ðxÞdx ð3Þ

Each increment is conditioned on the previous state of struc-
tural integrity. Here, f Dn�1

ð�Þ is the probability density function of
damage state to the occurrence of the ðn� 1Þ-th dynamic load,
which is obtained as the derivative with respect to d of
p½Dn�1 6 d�. Regarding that damage remains constant between load
events and that the increment of damage DDn not only depends on
the last state of damage but also on the load of intensity Y ¼ y, Eq.
(3) can be expressed in extended form as

p½Dn > d� ¼
Z 1

0

Z d

0
p½DDnðyÞ > d� x x; yj �f YðyÞf Dn�1

ðxÞdxdy ð4Þ

The probability distribution function of cumulative damage
FDn ðdÞ ¼ 1� p½Dn > d�, associated with the n-th load, for all d P 0,
is expressed as

FDn ðdÞ ¼
1 n ¼ 0R1
0 FDD1 ðd yj Þf Y ðyÞdy n ¼ 1R1
0

R d
0 FDDn ðd� x x; yj Þf Y ðyÞf Dn�1

ðxÞdxdy n ¼ 2; . . .

8><
>:

ð5Þ
Here FDD1 ð� �j Þ and FDDn ð� �j Þ denote the cumulative distribution

functions of random damage increments DD1 and DDn, respec-
tively. In Eq. (5), f Dn

ðxÞ ¼ dFDn ðxÞ=dx is the probability density func-
tion of cumulative damage to the n-th load, dð�Þ=dx indicates the
derivative with respect to x. For n ¼ 0, f D0

ðdÞ ¼ 1, if d ¼ 0; and
f D0

ðdÞ ¼ 0, if d–0. However,
R1
�1 f D0

ðxÞdx ¼ 1, in other words
f D0

ð�Þ is a Dirac’s delta function. The probability distributions
FDn ðdÞ, n ¼ 2; . . ., given by Eq. (5) should be obtained recursively.
Fig. 1 shows schematically the form of f Dn

ð�Þ, for a given integer
value of n, in which three characteristic states of damage can be
identified: 1) no damage, 2) a certain level of damage and 3)
collapse.

On the other hand, substituting Eq. (5) into Eq. (2), and express-
ing p½DðtÞ > d� in terms of its complement, the probability distribu-
tion function FDðtÞðdÞ, Eq. (2) is rewritten as

FDðtÞðdÞ ¼ 1�
X1
n¼1

pnðtÞ 1� FDn ðdÞ½ � ¼
X1
n¼0

pnðtÞFDnðdÞ ð6Þ

According to the renewal theory [17], pnð�Þ is expressed in terms
of the probability distribution functions FSn ð�Þ and FSnþ1 ð�Þ, which
describe the time to the n-th and to the ðnþ 1Þ-th load respec-
tively, and is written as

Damage, d

CollapseNo damage

0 1

fDn(d)

Fig. 1. Probability density function of damage at the n-th stochastic load.
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