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a b s t r a c t

To tackle challenges in low-probability, high-dimensional reliability analysis, this paper proposes hyper-
spherical extrapolation method to estimate the failure probabilities efficiently and accurately. The
extrapolation method employs hyper-spherical formulations of reliability problems developed based
on geometric insights of high dimensional standard normal space. The proposed method can extrapolate
the low probability region of interest using failure probabilities obtained from high/median probability
region. Owing to the generality of the formulation, the proposed method is expected to work for general,
component and system reliability problems defined in high-dimensional space of random variables.
Using different presumptions on extrapolation, two slightly different versions of the extrapolation
method are developed. Numerical examples with analytical limit-state functions and those concerning
nonlinear random vibration of a hysteretic oscillator are investigated to test and demonstrate the perfor-
mance of the proposed method. Finally, to facilitate an in-depth understanding of the proposed method
and further developments, insights gained from the development of the method are also provided. The
supporting source code and data are available for download at https://github.com/ziqidwang/Hyper-
spherical-extrapolation-method.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

As the scope of risk and reliability analysis expands, various
reliability methods are being applied to increasingly larger-scale
problems involving hundreds or thousands of random variables.
It is well known (see [1,2]) that some of the classical reliability
methods (e.g. first/second-order reliability methods (FORM/
SORM), design-point-based importance sampling methods) face
difficulties in such high dimensional reliability problems and could
produce erroneous results. The reason has to do with the exponen-
tially increasing volume of the probability space with the number
of random variables, and the fact that in high dimensions most of
the contribution to the failure probability comes from far regions
in the failure domain that have small probability density but large
volume [2].

Compared with other reliability methods, the performance of
the brute-force Monte Carlo sampling (MCS) scheme employing
the original joint probability density function has the merits of
being irrelevant to dimension and complexity of the limit-
state functions. However, since most reliability problems are

characterized by small failure probabilities, the brute-force MCS
is computationally inefficient and thus practically infeasible to
solve reliability problems with low failure probability. More
advanced Monte Carlo simulation techniques (e.g. sequential
Monte Carlo method [3–5], subset simulation [6–8], and cross-
entropy based sampling method [9–11]), although being more
efficient than the brute-force MCS, are still characterized by
relatively large computational demands for high dimensional,
complex reliability problems.

In this paper, the issues in low-probability, high dimensional
reliability problems are addressed by developing an extrapolation
method that uses failure probabilities obtained from high/median
probability levels. The extrapolation method is developed using
geometric insights of high dimensional standard normal space in
conjunction with a framework of hyper-spherical formulations
for reliability problems. This ‘‘hyper-spherical extrapolation”
method is designed to work for general, component and system
reliability problems defined in high dimensional spaces.

The structure of this paper is as follows. In Section 2, theoretical
concepts that are useful to understand the proposed extrapolation
method are first introduced. Section 3 provides general concepts
and computational details of the proposed method. In Section 4,
numerical examples with analytical limit-state functions as well
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as those representing nonlinear random vibration of a hysteretic
oscillator are investigated to test and demonstrate the method.
Section 5 provides discussions and insights on the development
of the extrapolation method. Finally, concluding remarks are pre-
sented in Section 6.

2. Formulation of reliability problems in high dimensional
standard normal space

The failure probability of a reliability problem defined in the n -
dimensional uncorrelated standard normal space can be formu-
lated in terms of the distance from the origin [11], i.e.

Pf ¼
Z 1

0
hðrÞf vðrÞdr ð1Þ

in which f vðrÞ is the probability density function (PDF) of the v-
distribution with n degrees of freedom representing the random
distance from the origin, and hðrÞ is the failure ratio of the hyper-
sphere surface area with radius r. The failure ratio hðrÞ represents
the percentage of the surface area of the hypersphere with radius
r that belongs to the failure domain. In a standard normal space,
points on a hypersphere is uniformly distributed, thus integrating
the failure ratio hðrÞ times the PDF f vðrÞ over the distance r yields
the failure probability.

Following Eq. (1) and using Monte-Carlo sampling, the proba-
bility in Eq. (1) can be estimated by

Pf ffi
1
M

XM
i¼1

hðriÞ ð2Þ

where ri’s, i ¼ 1; . . .M; are random samples drawn from the v-
distribution f vðrÞ with n degrees of freedom.

Note that Eqs. (1) and (2) are valid for any dimensions, however,
they are especially useful in high dimensional problems. This is
because in a high dimensional standard normal space almost all
‘probability information’ (consider the term hðrÞf vðrÞdr in Eq. (1))
is concentrated in a relatively narrow ‘‘important ring” region with
radius

ffiffiffi
n

p
� e, where n is the dimension and e is a perturbation

which is small compared to
ffiffiffi
n

p
[2]. A hypersphere that closely

encompasses the mode (i.e. the point in the probability space at
which its probability density has a locally maximum value) has
high probability density, but in high dimensions the surface area
of the hypersphere is negligible compared with a hypersphere that
is far away from the mode. Therefore, in high dimensional Gaus-
sian space the contribution to the probability involves a trade-off
between the exponentially decrease in probability densities with the
distance from the mode and the exponentially increase in the spherical
area with the distance from the mode. As a consequence of this
trade-off, there exists a typical set (important ring) where the den-
sities integrated by the volume makes dominant contributions to
the probability. For example, in a standard normal space with a
dimension of 400, more than 95% of the probability is contained
within the hyper ring of width 20� 1 and more than 99.99% of
the probability is contained within the hyper ring of width
20� 2. In fact, it is shown that when n ! þ1, r � Nð

ffiffiffi
n

p
;1=2Þ [2].

Thus a random distance ri (drawn from f vðrÞ) in Eq. (2) is highly

likely to have ri 2 ½
ffiffiffi
n

p
� e;

ffiffiffi
n

p
þ e�. As a result, if the dimension is

relatively high in Eq. (2) the variation in hðriÞ would be small.
This paper employs the concept of the hyper-spherical failure

domain. In an n -dimensional standard normal space, the hyper-
spherical failure domain with radius r is defined as the intersection
between the failure domain and the hypersphere with radius r, i.e.

F r � fSr \ Fg ð3Þ

in which F r denotes the hyper-spherical failure domain with radius
r, Sr denotes a hypersphere with radius r, and F is the failure
domain of the reliability problem. Note that F r , Sr and F are all
defined in the n-dimensional standard normal space. For a reliabil-
ity problem with linear limit-state surface in the n-dimensional
standard normal space, F r is circular (given Sr intersects F ). For
more general reliability problems, F r can be arbitrary shape and
can have multiple modes.

3. Development of hyper-spherical extrapolationmethod (HEM)

3.1. General concepts of the hyper-spherical extrapolation method

Consider a hyper-spherical cap on a hypersphere with radius r
defined in an n-dimensional Euclidian space, which is mathemati-
cally expressed by

Scapðr;l;aÞ ¼ fu 2 RnjuTl P r2 cosa; kuk ¼ klk ¼ rg ð4Þ

where l is the direction vector representing the center of the cap, a
is the maximum angle between the center l and vectors on the
hyper-spherical cap. The term cosa can be alternatively written
as cosa ¼ b=r, where b is the distance between the hypersphere
center and center of the base of the hyper-spherical cap (see Fig. 1).

The surface area of the hyper-spherical cap Scapðr;l;aÞ can be
expressed by [12]

Acapðr;aÞ ¼
1
2
AspðrÞBsin2a

n� 1
2

;
1
2

� �
; a 2 0;

p
2

h i
ð5Þ

where Bsin2a
n�1
2 ; 12

� �
is a regularized incomplete beta factor, and AspðrÞ

is the surface area of the hypersphere with radius r. Eq. (5) is
derived by integrating the surface area of an ðn� 1Þ-hypersphere
with radius r sina over a great circle arc, and using properties of
the beta function. Details of the derivation can be found in [2]. Note
that Eq. (5) is valid for a 2 ½0;p=2�, yet the extension to other cases
is straightforward. The regularized incomplete beta factor
Bsin2a

n�1
2 ; 12

� �
can be interpreted as the probability of a random vector

uniformly drawn from a hemisphere (with l pointing the center of
the hemisphere) falling onto the cap. For example, a ¼ p=2 corre-
sponds to a probability of 1, and a ¼ 0 corresponds to a probability
of 0.

If the hyper-spherical cap is used to represent a hyper-spherical
failure domain, using Eq. (5) the failure ratio hcapðr;aÞ can be
written as

Fig. 1. Hyper-spherical cap.

66 Z. Wang, J. Song / Structural Safety 72 (2018) 65–73



Download English Version:

https://daneshyari.com/en/article/6774067

Download Persian Version:

https://daneshyari.com/article/6774067

Daneshyari.com

https://daneshyari.com/en/article/6774067
https://daneshyari.com/article/6774067
https://daneshyari.com

