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a b s t r a c t

Asymptotic sampling is a recently developed method for calculating small failure probabilities of high-
dimensional problems. It is based on Monte Carlo simulation, however, extremely small probabilities
can be estimated with reasonable computational effort. The present paper presents an optimal strategy
for using asymptotic sampling. In particular, it is explained in which cases the accuracy of the results can
be increased by applying low-discrepancy sampling. A new surrogate technique is presented for obtain-
ing accurate results also in cases in which low-discrepancy sampling is not applicable effectually.
Furthermore, an extension of the method is shown for estimating threshold exceedance probabilities.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The safety of structures depends on resistances and loads,
which both eventually have to be regarded as random by nature.
All parameters which influence the resistance of the structure
(cross-section values and material properties) as well as all kinds
of loads acting on the structure can be considered as random vari-
ables described by their respective probability density functions. In
this way, one obtains a multidimensional joint probability density
function:

f X1 ;...;Xn
ðx1; . . . ; xnÞ ð1Þ

in which Xi are the random variables and n is the dimension. Failure
is typically denoted in terms of a scalar limit state function gð:Þ
attaining negative values. The failure probability PF can then be
expressed as an integral, bounded by the limit state function:

PF ¼
Z

� � �
Z

gðx1 ;...;xnÞ�0

f X1 ;...;Xn
ðx1; . . . ; xnÞdx1; . . . ; dxn ð2Þ

The challenge in calculating this integral lies in evaluating the
limit state function, which for nonlinear systems usually requires
an incremental/iterative numerical approach [1]. Since usually just
a very small region contributes to the value of the integral, it is

difficult to place integration points for numerical integration pro-
cedures appropriately [1]. This is particularly true for high-
dimensional integrals.

One method to overcome this difficulty is Monte Carlo (MC)
simulation. Thereby, the integral is evaluated by repeated random
sampling. The failure probability is then expressed as

PF ¼ Nfail

Neval
ð3Þ

Here Neval is the number of evaluations of the limit state func-
tion and Nfail is the number of evaluations which resulted in a
failure.

The generalized reliability index b is defined by

b ¼ /�1ð1� PFÞ ð4Þ
In this equation, /�1ð:Þ is the inverse standardized Gaussian dis-

tribution function. In the following, it will be assumed that the ran-
dom variables Xi are independent and identically distributed (i.i.d.)
Gaussian variables with zero mean and standard deviation r. Non-
Gaussian variables and possible correlations among them may be
introduced using marginal transformations and joint probability
density function models such as the Nataf-model [2,3,1].

The major advantage of MC for integral calculation lies in its
independence of the dimension. This means that the efficiency of
the method is not impaired by the number of variables the limit
state function depends on. However, since a representative num-
ber of failures is needed, the number of function evaluations
becomes prohibitively large when small failure probabilities are
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to be calculated. For example, to calculate a failure probability of
the order of 10�5, the number of evaluations should be larger than
106. Hence, one can easily imagine, that MC becomes impracticable
when a complicated finite element model is to be analysed.

Different strategies havebeendeveloped to reduce thenumberof
necessary function/model evaluations. Importance sampling meth-
ods [1] aimat obtainingmore failures by shifting the sampling to the
small region in n-dimensional space which actually contributes sig-
nificantly to the failure probability. An alternative approach is to
express the failure probability as a product of larger conditional
probabilities by introducing intermediate failure levels. Thereby,
the samples are drifted closer to the failure space in each level. This
method is known as subset simulation [4]. Recently, another
method, called asymptotic sampling, has been presented in [5].

2. General concept of asymptotic sampling

Similarly to the previously mentioned approaches, asymptotic
sampling (AS) aims at obtaining a representative number of fail-
ures out of a moderate number of function evaluations. However,
the method relies on a certain asymptotic property of the failure
probability in the n-dimensional i.i.d. normal space.

Asymptotic sampling exploits the asymptotic behaviour of the
failure probability expressed in terms of the reliability index b
when changing the standard deviation of the basic random vari-
ables. If the original standard Gaussian random variables are
replaced by variables with non-unit standard deviations r ¼ 1

f ,

then the computed reliability index will depend on the choice of
f. As a first simple case, consider a linear function of the basic ran-
dom variables Xk, say

gðXÞ ¼
XN
k¼1

akXk ð5Þ

with arbitrary real-valued coefficients ak. The random variable
Y ¼ gðXÞ will then be Gaussian with a zero mean and a variance

r2
Y ¼

XN
k¼1

a2k ð6Þ

The distribution function FY ðnÞ of this variable will therefore be
given by

FYðnÞ ¼ U
n
rY

� �
¼ U n=

ffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1

a2k

vuut
0
@

1
A ð7Þ

Upon changing the standard deviation of all basic variables
from unity to a value of 1=f , the standard deviation of Y changes
by the same amount. Thus, the distribution function changes to

FYðnÞ ¼ U nf

ffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1

a2k

vuut, 1
A

0
@ ð8Þ

from which the generalized reliability index (with respect to scale
factor f) is immediately found as

bðf Þ ¼ nfffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1

a2k

vuut
! bðf Þ

f
¼ nffiffiffiffiffiffiffiffiffiffiffiffiXN

k¼1

a2k

vuut
¼ const: ðfor fixed nÞ ð9Þ

This means that for a linear function of Gaussian variables, the
expression bðf Þ=f is invariant with respect to the choice of
f. Geometrically, b is the minimum distance of the origin from
the limit surface gðXÞ ¼ 0.

Eq. (9) is not true for the general, i.e. nonlinear, case. There is,
however, an asymptotic property which ensures similar behaviour
for many nonlinear cases. Eq. (15b) of [6] states that the general-
ized reliability index asymptotically converges to the minimum
distance of the origin from the limit surface as b ! 1. Hence the
above relation holds asymptotically as f approaches infinity:

lim
f!1

bðf Þ
f

¼ const: ð10Þ

This asymptotic property is exploited to construct a regression
model which allows to determine the reliability index for extre-
mely small failure probabilities. Fig. 1 shows this concept. By
increasing the standard deviation of the basic variables, a represen-
tative number of failure events can be obtained out of a moderate
number of simulation runs. The scaled reliability indices obtained
in that way are used as support points for the regression. The reli-
ability index of the original system, i.e. bðf ¼ 1Þ, is then obtained by
extrapolation.

For the fitting process the functional dependence is chosen as

bðf Þ
f

¼ Aþ B

f C
ð11Þ

Assuming C to be positive, this approach ensures asymptotic
convergence to a constant value (here to A) as f ! 1 (which is
equivalent to r! 0). Thus, the asymptotic property given in
Eq. (10) is satisfied. Of course, any other approach maintaining
the asymptotic behaviour could be chosen as well. The coefficients
A; B and C can be determined from a regression analysis, typically
by a least-squares fitting [5].

3. Optimizing the algorithm

In [5] it has been shown that asymptotic sampling is indepen-
dent of the dimensionality. However, accuracy of the approach
depends on several other factors, namely:

� accuracy of support points
� number of support points
� collocation of support points
� regression parameters
� particular geometrical shape of the limit state surface.

Obviously, the geometrical shape of the limit state surface of a
specific problem in standard normal space cannot be influenced
by the analyst. Thus, a substantial part of this paper focuses on
strategies to increase the accuracy of the support points. Further-
more, advices concerning number and collocation of the support

Fig. 1. Basic concept of asymptotic sampling.
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