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a b s t r a c t

The evolution of metaheuristic optimization algorithms towards identification of a global minimum is
based on random numbers, making each run unique. Comparing the performance of different algorithms
hence requires several runs, and some statistical metric of the results. Mean, standard deviation, best and
worst values metrics have been used with this purpose. In this paper, a single probabilistic metric is pro-
posed for comparing metaheuristic optimization algorithms. It is based on the idea of population inter-
ference, and yields the probability that a given algorithm produces a smaller (global?) minimum than an
alternative algorithm, in a single run. Three benchmark example problems and four optimization algo-
rithms are employed to demonstrate that the proposed metric is better than usual statistics such as
mean, standard deviation, best and worst values obtained over several runs. The proposed metric actually
quantifies how much better a given algorithm is, in comparison to an alternative algorithm. Statements
about the superiority of an algorithm can also be made in consideration of the number of algorithm runs
and the number of objective function evaluations allowed in each run.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, a myriad of evolutionary metaheuristic opti-
mization algorithms have been proposed in the literature. Some
algorithms proposed in the nineties can now be called ‘‘classics”,
such as Genetic Algorithms [30], Particle Swarm Optimization
[27], Ant Colony Optimization [9] and Harmony Search [14]. In
the past decade, many new algorithms were proposed; an incom-
plete list includes Big Bang-Big Crunch Algorithm [21], Ray Opti-
mization [23], Imperialist Competitive Algorithm [1,22], Mine
Blast [36], Firefly [40,12,32], Bat-Inspired [20], Cuckoo Search
[13], Dolphin Echolocation [24], Teaching-Learning-Based Opti-
mization [7], Search Group Algorithm [17], Backtracking Search
[5,37,38], to name just a few.

Evolutionarymeta-heuristic algorithms are popular at searching
for the global optimum in non-convex problems [2,15]. A popula-
tion of particles is initialized over the search domain, and exploits
it in a collaborative, interactive manner, looking for the global1

minimum [25,17]. The initial distribution over the design domain,
and the interactions between particles are controlled by random
numbers, which provides diversity and robustness to the algorithms.
This alsomakes each run of the algorithms unique. The stream of ran-
dom numbers used in one run can be controlled by the seed of the
random number generator; however, finding the global minimum
should not depend on the seed used. Hence, in practice, several runs
of the algorithm are required. Ideally, the global minima should be
found for every run, but this is usually not the case. The probability
(or relative frequency that a particular algorithm finds the global
minimum can be measured by the number of times this happens, rel-
ative to the total number of runs. This measure is not straightforward
because in many runs the algorithm converges to local or to ‘‘near
global” minima. In this setting, comparing the performance of differ-
ent algorithms becomes a relevant problem.

When a new metaheuristic algorithm is proposed, benchmark
problems should be used to compare its performance to existing
algorithms. The same is true for application of an existing algorithm
to a new field. In the early days, such comparisons were severely
handicapped. Taking the example of truss structures optimization,
early works typically presented only the best design found in sev-
eral runs [35,19,6,39]. Strikingly, sometimes not even the number
of objective function evaluations was reported. Such limited, biased
comparisons are not acceptable these days [18]. More recently, the
performance of metaheuristic algorithms has been compared by
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evaluating statistics of the minima obtained in each of several runs
of an algorithm. Statistics include the mean value, the standard
deviation, the best (smallest) and the worst largest) minima
obtained in several runs. Examples in truss optimization include
[31], Fadel Miguel et al. [11], Hasançebi et al. [20], Gandomi et al.
[13], Kaveh & Farhoudi [24], Degertekin & Hayalioglu [7], Kaveh
et al. [26], Gonçalves et al. [17] and Carraro et al., [4].

A problem with the above metrics is that they are not unique.
Surely, for minimization problems, the mean, the standard devia-
tion, the best and the worst minima found in several runs should
all be as small as possible. Ideally, the standard deviation should
be zero and the mean should be the smallest possible, in which
case the other metrics (best and worst) would agree with the glo-
bal minima of the problem. However, if the mean or best minima
found using algorithm A is marginally smaller than those found
using algorithm B, but the standard deviation is marginally larger,
which algorithm is better? The cited metrics alone cannot answer
this question. Two compounding problems related to the above are
that: a) the convergence of the above statistics with the number of
runs is usually not analyzed; and b) the number of runs varies sig-
nificantly from one paper to another.

More robust comparison procedures have been proposed and
are employed in other fields, e.g. Kolmogorov-Smirnov, Shapiro-
Wilk and D’Agostino-Pearson, Wilcoxon Signed-Rank Tests
[8,5,10,33]. These have the disadvantage of being more complex,
and assuming normality of the analyzed data.

In this context, the main contribution of this paper is the pro-
posal of a novel metric for comparing metaheuristic optimization
algorithms. It is based not only on averages, standard deviations
and best/worst results, but on the entire information concerning
minimum objective function values obtained during executions
of the algorithms. Based on the idea of statistical interference, it
computes which method, among two being compared, has larger
probability of obtaining the best result if just one execution was
performed. The proposed metric is very simple to compute, and
it is non-parametric, in the sense that it does not require any
assumption about probability distributions.

The remainder of this paper is organized as follows. In Section 2,
the proposed probabilistic metric is presented and explained. Sec-
tion 3 presents numerical results for three benchmark example
problems. Results include convergence plots of the proposed met-
ric, and of usual metrics, w.r.t. number of algorithm runs. Some
conclusions are drawn in Section 4.

2. Proposed probabilistic metric

Consider a general optimization problem, defined as:

Find d�

which minimizes OðdÞ
subject to :

hiðdÞ ¼ 0; i ¼ 1; . . . ;p;
gjðdÞ 6 0; j ¼ 1; . . . ; q;

d 2 S � Rn;

ð1Þ

where d� 2 Rn is a vector of design parameters, which minimizes an
objective function OðdÞ, subject to p equality and q inequality con-
straints, and S ¼ fdmin;dmaxg is a set of side constraints.

Assume an author is proposing a new heuristic algorithm2 to
solve the optimization problem in Eq. (1). To demonstrate effective-

ness of his algorithm, he will have to compare his solution to that of
existing algorithms. Since, in general, heuristic algorithms depend
on random numbers, the above comparison needs to be done for sev-
eral runs k ¼ 1; . . . ;m of each algorithm. Let ykP ¼ Oðd�Þ denote the
minimal value of the objective function, found by the Proposed algo-
rithm, in the k-th run, and let ykE ¼ Oðd�Þ denote the same metric for
an Existing algorithm. Assume also the randomparameters governing
each algorithm are independently generated from run to run. After
several runs of each algorithm, optimal objective functions values
are collected in vectors yP ¼ ½y1P ; y2P ; . . . ; ymP

P � and yE ¼ ½y1E ; y2E ; . . . ; ymE
E �.

Now, each component of vectors yP or yE can be seen as realizations
of identically distributed randomvariablesYP andYE, whose empirical
probabilities of occurrence are given by 1=mP and 1=mE, respectively.

If the probability density function f YE
ðyEÞ of the minimum val-

ues YE obtained by the existing algorithm and the cumulative dis-
tribution function FYP ðyPÞ of YP were known, then the probability
that the proposed algorithm produces an objective function value
YP smaller than YE would be given by:

Pbetter ¼ P½fYP < YEg� ¼
Z þ1

�1
f YE

ðyÞFYP ðyÞdy ð2Þ

where Pbetter can be read as ‘‘the probability that, in a single run, the
proposed algorithm yields a smaller (global?) minimum than the
existing algorithm”. Interpretation of this probability is straightfor-
ward. For instance, if the proposed algorithm has a 50% probability
of producing better results than the existing method, their perfor-
mances are equivalent. If this probability is larger than 50%, then
the proposed algorithm outperforms the existing algorithm. The
proposed probability metric also indicates how much better the
performance of one algorithm is in comparison to another. A prob-
ability of 99%, for instance, gives much more confidence in the per-
formance of the proposed algorithm, relative to the existing
algorithm, than a probability just above 50%.

In general, the probability distribution functions in Eq. (2) are
not known. Nevertheless, non-parametric empirical distributions,
derived exclusively from observed vectors yP and yE, can be
employed to compute the proposed probability metric. The empir-
ical approximations to the required probability density and cumu-
lative distribution functions are given, respectively, by:

f YE
ðykEÞ ffi

1
mE

ð3Þ

FYP ðykEÞ ffi
1
mP

XmP

j¼1

I y j
P 6 ykE

� �
ð4Þ

where IðÞ is the indicator function, resulting one (1) when the oper-
and is true, zero otherwise. The integral presented in Eq. (2) can
now be estimated, in a Monte Carlo sense, by:

Pbetter ¼ P½fYP < YEg� ffi 1
mPmE

XmE

k¼1

XmP

j¼1

Iðyj
P < ykEÞ

 !
ð5Þ

which asymptotically approaches Eq. (2) as mP ! 1 and mE ! 1.
For problems involving discrete design variables, many of the

optimal solutions will be the same. It would be unfair to claim
the proposed algorithm to be better, if it is producing the same
results. Hence, for these problems it is convenient to also evaluate
the probability that both algorithms are equivalent:

Peq ¼ P½fYP ¼ YEg� ffi 1
mPmE

XmE

k¼1

XmP

j¼1

Iðyj
P ¼ ykEÞ

 !
ð6Þ

Eq. (6) can also be used when a numerical tolerance is consid-
ered for the inequalities in Eq. (5). The probability that the Pro-
posed algorithm is worse than the Existing algorithm is:

2 The above discussion illustrates use of the proposed metric by an author trying to
defend a newly proposed algorithm, which is a usual application. The proposed
metric, however, can also be used for the uninterested comparison between any two
existing algorithms A and B.
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