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a b s t r a c t

A new method is proposed for efficient estimating the extreme value distribution (EVD) and small failure
probabilities of structures subjected to non-stationary stochastic seismic excitations. This method first
involves a preliminary estimation by kernel density estimation (KDE), which oscillates across the true
probability density function (PDF), as the original data for fitting. The selection of bandwidth in KDE is
suggested. Then, two least-square fitting procedures are performed to reconstruct the EVD, where a
two-section form parametric model for the EVD is proposed. The shifted generalized lognormal distribu-
tion (SGLD), which has a rich flexibility in shape, is fitted based on the preliminary estimation to obtain
the main body of EVD. On the other hand, the tail distribution of EVD can be obtained by fitting the prob-
ability of exceedance (POE) curve in logarithmic coordinate via a quadratic equation. Two numerical
examples, involving both linear and highly nonlinear structures subjected to non-stationary stochastic
seismic excitations are investigated. The EVDs and POE curves obtained by direct KDE and the proposed
method are all compared with those by Monte Carlo simulation (MCS). The investigations indicate the
accuracy and efficiency of the proposed method.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The extreme value distribution (EVD) of response of structures
subjected to seismic excitations, which can be modeled as non-
stationary stochastic processes, is of paramount importance in
earthquake engineering, particularly in seismic reliability assess-
ment and risk analysis [1,2]. In fact, the first-passage probability
of response is equivalent to the corresponding exceedance proba-
bility of extreme value distribution of response at a specified
threshold [3,4]. In other words, the first-passage reliability of
structures subjected to seismic excitations can be estimated once
the EVD of response is determined.

For the estimation of EVD of response, analytical methods can
be used in very special cases and hence are not applicable to
general engineering problems. Alternatively, some approximate
methods have been developed in the past several decades for this
problem. One of the well-known results is the level-crossing

process based method, which takes the Rayleigh distribution as
the EVD of a narrow-banded Gaussian stochastic process [5]. How-
ever, the Poisson’s assumption or the Vanmarcke’s assumption of
the level-crossing event is usually imposed for stochastic pro-
cesses, which may come from intuition and empirical data rather
than theoretical basis [1]. Some other approximate methods
include the equivalent linearization method [6], Fokker-Planck
equation method [7], moment closure method [3], and so on. These
methods have been well developed, however, there are still great
difficulties to apply these methods for practical engineering struc-
tures exhibiting strong nonlinearity under seismic loadings. The
third is the simulation based method, which is suitable to general
nonlinear structures driven by stochastic seismic excitations.
Although Monte Carlo simulation (MCS) is generally usable to
derive the EVD, the practical applicability might reach soon the
limits of the feasibility due to large computational efforts in the
case of complex numerical models [8]. The moment method, which
requires neither iterations nor the computation of derivatives, is
effectively extended to derive the EVD of structural dynamic sys-
tems [9], where the moments are evaluated efficiently based on
the dimension reduction methods. However, this method becomes
quite unwieldy if the size of the random vector increases and when
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seismic excitations are modeled as non-stationary stochastic pro-
cesses. In the past nearly 20 years, a new method named probabil-
ity density evolution method (PDEM) [10], which can capture the
instantaneous probability density function (PDF) of general nonlin-
ear multiple-degree-of-freedom (MDOF) structures with random-
ness involved in both structural properties and excitations, is
developed and extended to estimate the EVD of response [1,11].
In PDEM, the physical modelings of stochastic dynamic excitations
[12,13] are usually employed, where some physical parameters are
modeled as random variables. This method serves as a powerful
tool to estimate the PDF and EVD of dynamic response of structures
with high accuracy and efficiency [14–21]. Nevertheless, the effi-
cient methods for estimating the EVD of nonlinear structures are
still highly desirable.

On the other hand, the efficient estimate of small failure prob-
abilities of nonlinear structures under random excitations is
always a challenging task [22]. In this regard, the tail distribution
of EVD should be modeled with accuracy. Several techniques for
modeling the tail distribution of EVD, e.g. the subset simulation
method [23], tail equivalent linearization method [24] and asymp-
totic sampling method [25], etc., have been developed recently.
However, these techniques may not be able to keep the good trade-
off of accuracy and efficiency for the tail distribution modeling. He
and Gong propose an extrapolation method to efficiently obtain
the tail of EVD [2,22], where two relatively large exceedance prob-
abilities need to be specified based on direct simulations for
parameters estimation. Nonetheless, the selection of different
exceedance probabilities may significantly influence the accuracy
of tail distribution modeling.

In the present paper, we will develop an efficient method for
estimating the EVD and small failure probabilities of general
nonlinear structures subjected to non-stationary stochastic seis-
mic excitations. The paper is arranged as follows: In Section 2,
the problem formulation is elucidated. Then, Section 3 devotes
to developing a two-step method to reconstruct the main body
and tail distribution of EVD, respectively, in which the kernel
density estimation and two least square fitting procedures are
involved. The efficacy of the proposed method is illustrated by
two numerical examples in Section 4, including a linear and a
hysteretic MDOF structures subjected to non-stationary stochas-
tic seismic excitations. In Section 5, the concluding remarks are
included.

2. Problem formulation

Consider an n-degree-of-freedom general nonlinear structures
subjected to non-stationary stochastic seismic excitations. The
equation of motion is governed by

M€XðtÞ þ C _XðtÞ þ G½XðtÞ� ¼ �MI€xgðtÞ ð1Þ

where M and C are the n by n mass and damping matrices and X, _X
and €X are the n by 1 displacement, velocity and acceleration vectors,
respectively. The overdots stand for derivative with respect to time.
G½XðtÞ� is the restoring force vector, which might be linear or nonlin-
ear with respect to X. The term €xgðtÞ is the time-domain represen-
tation of acceleration of ground motion, which is regarded as a
non-stationary stochastic process.

In the past decades, the modeling of non-stationary stochastic
process has attracted great attention, which is of great significance
for seismic reliability analysis of general nonlinear structures. A
variety of methods have been well studied for this purpose, among
which the spectral representation method [26] is widely adopted
in practical engineering. The time-domain representation of non-
stationary stochastic process €xgðtÞ by the spectral representation
method is given by

€xgðtÞ ¼ gðtÞ
ffiffiffi
2
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where gðtÞ is the envelope function defined as
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where c is the coefficient of attenuation, t1 and t2 are the start and
end time instants of the stationary portion of the ground motion, T
is the time duration of the ground motion.

The amplitude Ai is represented by

Ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S€xg ðxiÞDx

q
ð4Þ

where S€xg ðxÞ is the earthquake acceleration power spectral density
(PSD), Dx is the frequency interval and xi ¼ iDx, xis are the dis-
cretized frequencies.

The random phase angles his are the independent random vari-
ables uniformly distributed over ½0;2p�.

Actually, the infinite series is involved in the spectral represen-
tation method and thus the truncation must be performed practi-
cally. To make the error of using the spectral representation
method to describe the stochastic seismic excitation as small as
possible, many terms, say m = 500–1000, are usually retained. It
is seen that the truncation of the infinite series also results in a
large number of random variables involved in Eq. (1) to obtain
the stochastic seismic response of structures.

If we denote H ¼ ðh1; h2; . . . hmÞ, the solution to Eq. (1) can be
represented in the form that

XðtÞ ¼ HðH; tÞ; _XðtÞ ¼ hðH; tÞ ð5Þ
where H and h are deterministic operators.

Usually, a one-dimensional physical quantity such as the stress
at key point, the inter-storey drift, etc., is of great concern for reli-
ability analysis, which could be expressed as

ZðtÞ ¼ w½XðtÞ; _XðtÞ� ¼ HZðH; tÞ ð6Þ
where w and HZ are other deterministic operators.

Denote the extreme value of response ZðtÞ for the structural
dynamic system (1) as

Zext ¼ ext
t2½0;T�

ZðtÞ ¼ WðH; TÞ ð7Þ

Usually, the extreme value Zext is a positive random variable. For
example, if one considers the maximum absolute value of ZðtÞ in
the time interval ½0; T�, Eq. (7) is equivalent to

Zext ¼ jZjmax ¼ max
t2½0;T�

jZðtÞj ð8Þ

The reliability R in the form of extreme value can be expressed
as [1]

R ¼ PrfZext 6 ZBg ð9Þ
where Pr denotes probability for short, ZB is the threshold.

Equivalently, Eq. (9) can be transformed as

R ¼
Z ZB

0
pZext ðzÞdz ð10Þ

where pZext ðzÞ is the extreme value distribution (EVD).
The failure probability pf is then goes to

pf ¼ 1� R ð11Þ
It is seen that the EVD of response plays a crucial role in assess-

ing the reliabilities or the failure probabilities of structures. In this
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