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a b s t r a c t

Kalman Filter (KF) based parameter estimation assumes Gaussianity of the system parameters and thus
propagates only the first two moments of the states. Application of Particle filter or Ensemble Kalman fil-
ter to estimate non-Gaussian parameters, although more accurate, is computationally expensive.
Generalized polynomial chaos (gPC) is well-known as an effective tool to describe any dynamic system
with stationary uncertainty through a set of orthogonal basis functions and associated coefficients.
This article couples gPC with Extended KF (EKF) algorithm in which the uncertainty propagation from
parameter to measurement is described through gPC expansion of parameters and outputs.
Subsequently, the gPC coefficients of the parameter expansion are estimated from available measure-
ments employing EKF. Thus, instead of selecting the system parameters as states, we consider the asso-
ciated parameter gPC coefficients as state variables which reduces the problem of estimating the
complete distribution of parameters down to identification of a few gPC coefficients. The proposed
method is tested on systems with either Gaussian or non-Gaussian parameters. The error in estimating
non-Gaussian parameters using KF based techniques is demonstrated.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Response prediction of a complex structural system is generally
achieved through an idealized mathematical model based initially
on a set of prior assumptions and then updated periodically with
new information obtained through measurements. The initial ide-
alization and subsequent updating impart uncertainty in the model
and its predictions. To enhance the predictive ability of the model,
systematic calibration through inverse estimation of parameters
from the real measurements is often practised. Commonly, uncer-
tainties in the model parameters are dealt with in a probabilistic
framework where variability in the measurement space is mapped
back to the parameter space. These types of problems can be cate-
gorised under the broad class of stochastic inverse problems.

Direct identification of parameter uncertainty from output vari-
ability information requires the simulator model to be invertible,
which is not always assured. To reduce computational complexity
and time, approximating the actual simulator model by a meta
model can be used. Unfortunately, replacing a detailed phenomeno-
logical model with a much simplified meta model increases the
model uncertainty.

1.1. Existing methods

Identification of parametric uncertainty in probabilistic frame-
work can be performed using Bayesian inference through maxi-
mum likelihood estimation (MLE) [1–4]. In MLE approach, the
Bayesian estimation problem is posed as a large dimensional opti-
mization problem and subsequently solved using gradient based
[5] or other optimization techniques [6,7]. However, due to the
non convex nature of this high dimensional problem, obtaining a
practical solution often poses as the major challenge.

Kalman filtering [8] (KF) based stochastic data assimilation
techniques have been applied extensively to identify system
parameter uncertainty from noisy output measurements [9–13]
by considering the parameters as additional Gaussian states. KF
attempts Bayesian belief propagation to optimally estimate the
system states by combining prior belief on states with its likeli-
hood with new measurement. Being a linear estimator, application
of KF is limited only to linear systems. This shortcoming led to the
introduction of the nonlinear variants of KF (e.g. Extended KF (EKF)
[14,15], Unscented KF (UKF) [16] etc.) to handle nonlinear prob-
lems by either locally linearising the system or imposing Gaussian-
ity on the posterior distribution. EKF performs first order Taylor
series expansion of the state transition functions, while UKF prop-
agates the uncertainty through a set of weighted sigma points
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around the current state estimate. To employ EKF/UKF for param-
eter estimation, parameters are appended in an extended state
vector while representing the otherwise linear system through a
bi-linear/nonlinear state space representation [17]. Nevertheless,
the assumption on Gaussianity in states or parameters might not
always agree with the real situation. Forcibly fitting a Gaussian dis-
tribution to a non-Gaussian parameter, in fact, can produce large
errors in its estimation.

To accommodate non-Gaussian distributions, particle filter (PF)
approaches propagate higher order moments through a set of par-
ticles [18–21] and subsequently the posterior estimate is obtained
by updating the prior estimate of the particles with their respective
likelihood with the current measurement. PF assumes that the
parameter domain is discrete and thus updating the prior probabil-
ity of a discrete set of sample particles using their likelihood gives a
measure of the uncertainty in the predefined parameter set. How-
ever, with increased dimensionality in the parameter space, the
computational demand increases heavily which can render PF
computationally inefficient [22]. Apart from these filtering tech-
niques, crude Monte-Carlo sampling based Ensemble Kalman fil-
tering technique offers a robust approach to identifying the
parametric variability [23]. However, estimating the probability
distribution for the entire set of parameters accurately can be quite
expensive.

1.2. Generalized polynomial chaos expansion (gPC)

Introduced by Spanos and Ghanem [24] using the concepts
given by Wiener [25] as homogeneous chaos expansion, Polyno-
mial chaos expansion (PCE) technique has emerged as an efficient
tool to describe systems with stationary uncertainty using a set of
orthogonal bases and associated coefficients [26,27]. PCE can be
considered as an advancement of Karhunen–Loeve(KL) expansion
[28,29] to discretize any random quantity and to describe its
uncertainty through parametrization since the former does not
demand the covariance function of the random space to be known
a priori. Xiu and Karniadakis [30] later generalized PCE (denoted as
gPC) using the result of Cameron-Martin [31] to discretize arbitrary
random spaces using hypergeometric orthogonal polynomials cho-
sen from the so called Askey scheme.

In gPC, the physical random variable v is expressed in terms of a
random vector n, termed as germ. Based on the selection of germ
distribution, a set of mutually orthogonal basis functions (polyno-
mials) /ðnÞ can be selected. With this germ n and polynomial bases
/ðnÞ, the physical random variable v is described as:

vðnÞ ¼ a0/0ðn0Þ þ
X1
i1¼1

ai1/i1 ðni1 Þ þ
X1
i1¼1

X1
i2¼1

ai1 ;i2/i1 ;i2 ðni1 ; ni2 Þ

þ � � �1 ¼
X1
i¼1

ai/iðnÞ ð1Þ

where ais are the coefficients of the polynomial expansion.
Verlaan and Heemink [32] used the intrusive Galerkin projec-

tion approach to solve the coefficients ai of the expansion. In later
works, collocation technique [33] introduced a more efficient
approach for estimating the polynomial coefficients.

The basis polynomials vary depending on the germ distribution.
For example, for a normally distributed germ, Hermite polynomials
are the best suited basis functions, for uniformly distributed germ
the basis should be Legendre type and so on. Details of other poly-
nomial basis for different germ distributions are listed in Table 1.
To describe a random variable exactly through gPC, an infinite order
expansion is ideally required. However, for the sake of practicality,
the expansion is generally truncated beyond a certain order.

gPC has been employed by Xiu and Karniadakis [34–36] for
solving stochastic differential equations of fluid mechanics prob-

lems. Sandu et al. [37–39] employed the gPC technique for multi-
body dynamics and parameter estimation problems [40]. Soize
and Ghanem [41] demonstrated it for estimating arbitrary proba-
bility densities. Desceliers et al. [42] employed maximum likeli-
hood estimate (MLE) to identify the gPC coefficients of an
arbitrary random filed.

Pence et al. [54], Pence [55] employed a combination of gPC and
MLE in which each point estimate on the probable solution grid is
propagated though the system dynamic model using gPC and sub-
sequently MLE is employed to identify the estimate. Jacquelin et al.
[56] proposed a modification in gPC to accelerate its convergence.
gPC theory has also been extensively used in the literature for
uncertainty propagation of otherwise deterministic systems
[25,30,43]. This technique is capable of describing an arbitrary
parameter distribution in an inexpensive way. It has been exten-
sively used in the context of structural mechanics problems as well
[44–48,59–61]. A review of its application for structural vibration
problems can be found in Schuëller and Pradlwarter [49]. Sepah-
vand et al. [50,51] employed gPC for the purpose of parametric
uncertainty quantification of stochastic systems. Blanchard et al.
[40,52] used gPC technique along with EKF algorithm for parame-
ter identification: gPC solves the forward dynamic state-space
problem while EKF updates the state estimates. Li and Xiu [53]
demonstrated the application of Ensemble Kalman filtering (EnKF)
with gPC theory: the computational efficiency and accuracy are
increased by solving the state prediction equation through gPC.

In this article, we couple gPC with Extended Kalman Filter (EKF),
to propose a new algorithm in which the uncertainty propagation
from parameter to measurement is described using a gPC meta
model. The required gPC coefficients of the parameter gPC model
are then estimated inversely using EKF. As we show in the follow-
ing, such an approach enables an accurate and efficient estimation
of any random parameter.

2. A new parameter estimation approach

2.1. The problem formulation

Let the system be characterized by a set of parameters x that are
random in nature. There is a map F (possibly unknown but accu-
rate models of which are available) that relates x to the system
output y. The actual output y is not known, but can be measured
as �y repeatedly, giving the collection Y. The objective of this study
is to determine the probability distribution of x using the informa-
tion stored in Y and the best available model F. Algorithm 1 dis-
plays the pseudo-code of the coupled gPC-EKF estimator
developed in this work.

F is typically a finite element model that maps each realization
in parameter space x to a corresponding point in output space y.
Thus for any parameter-output pair, if the uncertain parameter
can be described by a gPC expansion with a set of germs as its argu-
ment, the associated output gPC expansion can always be defined
by the same set of germs:

yðnÞ ¼ FðxðnÞÞ ð2Þ
where xðnÞ ¼ ½x1ðn1Þ; x2ðn2Þ; . . . ; xnðnnÞ� is the parameter vector
and n ¼ ½n1; n2; . . . ; nn� is the associated germ vector.

Table 1
Polynomial types for different germ distributions.

Germ distribution Support domain Polynomial type

Normal Nð0;1Þ R Hermite
Uniform uð�1;1Þ ½�1;1� Legendre
Gamma Rþ Laguerre
Beta Rþ Jacobi
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