
Probabilistic bearing serviceability of drilled shafts in randomly
stratified rock using a geostatistical perturbation method

Harald Klammler a,b,⇑, Jae H. Chung b,c

a Federal University of South Bahia, Itabuna, Bahia, Brazil
bBridge Software Institute, Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL, USA
cComputer Laboratory for Granular Physics Studies, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, USA

a r t i c l e i n f o

Article history:
Received 21 March 2015
Received in revised form 16 August 2016
Accepted 16 August 2016

Keywords:
Drilled-shaft foundation
Reliability-based design method
Serviceability design
Uncertainty
Spatial variability

a b s t r a c t

The bearing stiffness (i.e., the slope of load-displacement curve at the tip) of drilled shaft foundations is
an important serviceability-design parameter, especially for rock-socketed application of shallow embed-
ment depths. Numerical solution techniques, such as finite element analysis (FEA) models, provide useful
tools for investigating the bearing (tip) stiffness under various boundary conditions both homogeneous
and heterogeneous. However, for uncertain and spatially heterogeneous mechanical input parameters,
computational costs are high when meaningful statistical parameters of tip stiffness are to be obtained
from full Monte Carlo FEA simulations. In the present work, an analytical expression for a one-
dimensional, linear load-displacement relationship is derived by making use of perturbation analysis
on randomly-stratified rock layers and their effects in the development of the tip stiffness using two-
dimensional axisymmetric FEA. Numerical results show that spatial variability in both elastic modulus
and undrained shear strength (cohesion) of supporting rock layers affect tip stiffness. However, the influ-
ence of cohesion on expectation and uncertainty of tip stiffness may be safely neglected for serviceability
design. The tip stiffness of a drilled-shaft foundation is found to be highly proportional to the harmonic
average of elastic moduli with averaging weights decreasing exponentially from the shaft tip downward.
Exponentially-weighted harmonic averaging of elastic moduli is then incorporated in Winkler models to
reasonably predict the results of full Monte Carlo FEA for cases where (1) a depth profile of elastic mod-
ulus is available at the footprint of a shaft, and (2) only geostatistical characteristics (i.e., expectation,
variance, correlation length) of elasticity of rock are known a priori at a construction site. The presented
closed-form solution is in good agreement with predictions of Monte Carlo FEA, and thus, may offer a
practical alternative tool for the serviceability design.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The design and construction of rock-socketed drilled shaft foun-
dations has introduced multi-dimensional finite element analysis
(FEA) to the infrastructure industry. Particularly, the bridge design
community has been increasingly paying attention to geological
heterogeneity, which requires a more rigorous material character-
ization of rock conditions in the full utilization of the Load and
Resistance Factor Design (LRFD) method. In application of
reliability-based design methods [24,30,12,1] design engineers
often assess the probability distribution of total shaft resistances
(side skin friction plus end bearing) for the strength design. This

probability distribution may then be compared to a probability dis-
tribution of axial load on the shaft for quantifying an expected
probability of failure [31,34]. However, where a strong bearing
layer is absent or/and its mechanical parameters are uncertain,
tip resistance has been, in general, neglected for a conservative
design while solely relying on frictional resistance of shafts with
enlarged diameters [22,9].

On contrary, rock-socketed drilled shafts are expected to trans-
fer a substantial part of the applied load to the bearing rock
[2,28,1]. Under the assumption of homogeneous rock, design charts
and simplified closed-form solutions have offered a straightfor-
ward means of calculating tip stiffness [35,36,23,41,40]. However,
despite the fact that simplicity of these design methods has
increased time efficiency in bridge design practice [40], spatial
variability in the supporting rock [7,25,33] is known to potentially
affect the serviceability design [32,42]. One method of computing
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the immediate settlement of a deep foundation in heterogeneous
rock is to formularize an elastic spring constant within an influence
depth to account for the strain field of the rock stratum per
continuum-based mechanics. Therefore, the elastic modulus of
the rock is estimated from arithmetic averaging of mass moduli
of rock core samples obtained from laboratory compression tests.
During the design processes, lack of confidence in the averaged
value obtained from a small sample size can severely undermine
the credibility for the predicted serviceability of the rock-
socketed drilled shaft foundation mainly due to uncertainties asso-
ciated with degrees of spatial variability (i.e., the random spatial
variation of the elasticity) and inherent statistical errors.

Problems of parameterized uncertainty can be investigated
using stochastic finite element (FE) procedures, i.e., Monte Carlo,
perturbation, and spectral methods [38,37]. In Monte Carlo FEA,
output parameters of interest are stochastically determined

based on a large number of statistical realizations of spatially-
correlated geological input variables [15,5,10,11]. Although
Monte Carlo methods are a comprehensive design tool for engi-
neers to assess serviceability, computational cost represents a
drawback for reliable inference of relevant statistics to large-
scale multi-dimensional boundary-value problems. Spectral
methods [13,14,39] attempt to overcome such computational
challenge by incorporating series expansions with random coeffi-
cients for material stochasticity into discretization of governing
differential equation(s); however, these methods are still under
development. The third group of design methods are perturba-
tion approaches [4,16–18,26,27,31,34] based on applying low-
order Taylor expansions for solving the governing differential
equation(s). They typically are either first- or second-order
approximations of response variables, which are distribution-
independent, yet limited to a small range of variation in the

List of notation

Dimensionless
A, X, Y, f 0 i, f 00 auxiliary variables
CV coefficient of variation in general
CVE coefficient of variation of E
CVFIELD coefficient of variation of KFIELD

CVKeff coefficient of variation of Keff

CVc coefficient of variation of c
CVk coefficient of variation of k
CVkEQN coefficient of variation of kEQN
CVkFEA coefficient of variation of kFEA
Exp[] expectation operator
fE(i) perturbation factor for E (of the ith layer)
fc(i) perturbation factor for c (of the ith layer)
i, j, k indices denoting layers
n total number of layers
n2D number of layers over a distance 2D bellow the shaft tip
m dimensionless material constant in Hoek and Brown’s

failure criterion
s dimensionless material constant in Hoek and Brown’s

failure criterion
rEE = rij spatial auto-correlation function of E between ith and

jth layers
rEc correlation coefficient between E and c in identical lay-

ers
rcc = rij spatial auto-correlation function of c between ith and

jth layers
wEi influence (or sensitivity) factor on tip stiffness for a per-

turbation in E of the ith layer
wci influence (or sensitivity) factor on tip stiffness for a per-

turbation in c of the ith layer
DfEi residual with zero expectation of random fEi
Dfci residual with zero expectation of random fci
aEE,cc,Ec effective weighting factors
k(EQN) relative bias between tip stiffness estimated from equa-

tions and simulated by FEA
kFEA relative bias between tip stiffness simulated by FEA and

measured in the field
llnk expectation of lnk
lk expectation of k
lkEQN expectation of kEQN
lkFEA expectation of kFEA
rlnk standard deviation of lnk

Length
D shaft diameter

L shaft embedment length
av vertical correlation length of E and c
d random tip displacement
d0 deterministic tip displacement
zi center elevation of the ith layer above shaft tip
ld expectation of d

Force
R random tip resistance
R0 deterministic tip resistance
lR expectation of R

Force per length
KEQN estimated tip stiffness from equations
KEeff effective tip stiffness for perturbation in E of multiple

layers (c is homogeneous)
KFEA estimated tip stiffness from FEA simulations
KFIELD field measured tip stiffness (e.g., from static load test)
KEi tip stiffness for perturbation in E of the ith layer
Keff effective tip stiffness for perturbation in E and c of mul-

tiple layers
Kh tip stiffness for homogeneous scenario
Kceff effective tip stiffness for perturbation in c of multiple

layers (E is homogeneous)
Kci tip stiffness for perturbation in c of the ith layer
lKFIELD expected tip stiffness for constructed shaft in the field
lKeff expectation of Keff

llnKeff expectation of ln Keff

rlnKeff standard deviation of ln Keff

Force per area
E elastic modulus
Eeff harmonically-averaged effective modulus of elasticity
Eh E for homogeneous scenario (expectation of heteroge-

neous modulus)
Ei E of ith layer
c cohesion in general
ch c for homogeneous scenario (expectation of heteroge-

neous cohesion)
ci c of the ith layer
rc Uniaxial compressive strength
r0
1 Major principal effective stress

r0
3 Minor principal effective stress or confining pressure
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