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a b s t r a c t

Importance sampling can be highly efficient if a good importance sampling density is constructed.
Although the parametric sampling densities centered on the design points are often good choices, the
determination of the design points can be a difficult and inefficient task itself, especially for problems
with multiple design points, or highly nonlinear limit state functions. This paper introduces a nonpara-
metric importance sampling method based on the Markov chain simulation and maximum-entropy den-
sity estimation (MEDE). In the proposed method, Markov chain simulation is utilized to generate samples
that distribute asymptotically to the optimal importance sampling density. A nonparametric estimation
of the optimal importance sampling density is then obtained using the MEDE technique. The conven-
tional MEDE method is difficult for multi-dimensional problems as it needs to solve a set of simultaneous
nonlinear integral equations. This paper developed a new MEDE technique for multivariate dataset. The
method starts with using histogram to approximate a density. The multi-dimensional histogram is con-
verted into a series of one-dimensional conditional PDFs in each dimension and the density is recon-
structed by means of orthogonal expansion. Thus, the solution of MEDE is converted to a set of
coefficients of the Legendre polynomials. The new importance sampling method is illustrated and com-
pared with the classical kernel-based importance sampling using a number of numerical and structural
examples.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Importance sampling is a popular variance reduction technique
for reliability analysis. The idea is to carry out simulation with
sample points that concentrate in the failure region, as only these
samples contribute to the failure probability. Consider a d�dimen-
sional random vector X ¼ ðX1; . . . ;XdÞ with a joint probability den-
sity function (PDF) f ðxÞ. Let gðxÞ represent the limit state function
defined such that failure occurs when gðxÞ 6 0. With importance
sampling, the failure probability, Pf , is calculated as

Pf ¼
Z
Rd

1½gðxÞ 6 0� f ðxÞ
hðxÞhðxÞdx; ð1Þ

in which 1½A� is the indicator function for event A, having the value 1
if event A occurs and the value 0 otherwise; hð Þ is the importance
sampling density function, which is used to draw samples instead
of from the actual probability density f ðxÞ.

The efficiency and accuracy of importance sampling is critically
dependent on the choice of hðxÞ. It has been shown that an optimal
importance sampling density function hoptðxÞ exists [1]

hoptðxÞ ¼ 1½gðxÞ � 0�f ðxÞ
Pf

: ð2Þ

If hoptðxÞ is used the variance of the estimated Pf becomes zero
regardless of the number of simulations. However, the optimal
importance sampling function as defined in Eq. (2) generally is
unknown as it involves Pf , which is to be determined. A number
of techniques have been proposed to construct good importance
sampling functions. A common approach is to choose the impor-
tance sampling density as a joint Gaussian distribution centered
around the design point [2]. Although design points can often char-
acterize the region of most interest, the search for the design points
typically involves a constrained optimization problem, and can be a
difficult and inefficient task itself, especially for problems with mul-
tiple design points, or highly nonlinear limit state functions [3].

Another approach is to use the kernel density estimation
technique to construct nonparametric importance sampling
densities. In the kernel density estimator, the density function is
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approximated by a sum of kernel of functions centered at the data
points, and a bandwidth associated with the kernel function is
used to control the smoothness of the estimated densities. Ang
et al. [4] proposed a kernel method to approximate the optimal
importance sampling density. The method requires an initial
Monte Carlo run to generate the samples in the failure region.
Thus, it is not efficient for problems with small failure probabili-
ties. Au and Beck [5] proposed an importance sampling scheme
to improve the efficiency of the method in [4] by using the Markov
chain simulation to generate the samples that populate in the
regions of most interest. In Kurtz and Song [6], the importance
sampling density is constructed using Gaussian mixture kernel.
The difference between the constructed density and the optimal
sampling density was measured by the Kullback–Leibler cross
entropy. Various hybrid methods have also been proposed by com-
bining the surrogate model (e.g., Kriging) and the importance sam-
pling to further improve the sampling efficiency [7].

In summary, most of the existing methods for constructing non-
parametric importance sampling density relies on the kernel-based
density estimation. Since the kernel density has a shape similar to
the optimal sampling density, a failure region of almost any shape
can be handled. The kernel density method can also be extended to
higher dimensions. However, the choice of the bandwidth of the
kernel may heavily affect the accuracy of the kernel density esti-
mator, particularly when the number of samples is not very large
[8]. The resulting estimate may contain spurious data artifacts if
the bandwidth is not chosen appropriately.

Maximum entropy (ME) approach is a widely used density-
estimation method [9]. The key idea of the maximum-entropy den-
sity estimation (MEDE) is to find the probability density that max-
imizes its entropy under specified moment constraints. The
moment constrained maximum entropy problem yields least
biased probability density among all candidate densities that are
consistent with available sample data [10–13]. However, the con-
ventional MEDE becomes inefficient when handling multivariate
data as the method requires to solve a set of simultaneous nonlin-
ear integral equations, one for each moment constraint. In such
cases, the dimensional reduction method can be used in conjunc-
tion with ME to estimate the probability of failure [14]. With the
dimensional reduction method, a multi-dimensional function is
decomposed in terms of the orthogonal component functions
involving low-dimensional vector only, thus the maximum
entropy works effectively and the curse of dimensionality can be
mitigated. More recently, Zhang and Pandey [15] presented a frac-
tional moments-based maximum entropy method for deriving the
PDF of structural response, in which the fractional moment of a
multi-variate function is obtained by a multiplicative form of
dimensional reduction method. By using fractional moments as
the constraints of maximum entropy, more statistical information
can be obtained from the samples and thereby many limitations of
traditional maximum entropy method can be overcome. Ref.
[16,17] developed improved algorithms for computing the maxi-
mum entropy problem in higher-dimensional domains. The algo-
rithms use multi-dimensional orthogonal polynomial basis in the
dual space of Lagrange multipliers in the iterative optimization
process.

This paper introduces a new maximum entropy-based impor-
tance sampling scheme. The proposed methodology involves the
generation of samples that populate the important region by Mar-
kov chain simulation, and the construction of importance sampling
density by the maximum entropy density estimation method. We
developed a novel solution to the multi-dimensional entropy
moment problem by converting a multi-dimensional histogram
into a set of coefficients of the Legendre polynomials, thus obviat-
ing the need for dimension reduction techniques.

The paper first briefly introduces the Markov chain simulation
in the context of importance sampling, followed by the description
of the classical moment-constrained maximum-entropy density
estimation. A new MEDE method based on the expansion of condi-
tional PDF is then presented in Section 4. The procedure of the pro-
posed importance sampling method is summarized in Section 5.
Four examples are given to demonstrate the application and effi-
ciency of the proposed method. Comparisons of the new method
and the classical kernel-based importance sampling are made.

2. Markov chain simulation

The first step of the proposed importance samplingmethod is the
generation of samples that cover the region ofmost interest. As seen
in Eq. (2), the closed form expression for the optimal importance
sampling density function is unknown, thus the direct Monte Carlo
sampling procedure cannot be used. In this case, the Markov chain
simulation can be employed to construct a Markov chain samples
having a PDFwhich tends asymptotically to the optimal importance
sampling function [5]. It should be noted that the adaptive Markov
chain simulation (as introduced in [18,19]) may be more efficient
than the classical Markov chain simulation. This study employs
the classical Markov chain simulation because the main innovation
of this paper is themulti-dimensionalMEDE technique developed in
Section 4. Markov chain simulation is introduced and discussed in
many texts. For a complete discussion of the proposed importance
samplingmethod,we briefly introduce theMarkov chain simulation
in the context of importance sampling.

The classical Markov chain simulation method is based on the
random-walk Metropolis algorithm [20]. Let pð Þ denote the den-
sity to be simulated, i.e., the target distribution density function.
Suppose that a sample point xi has been sampled. Then a point y
is generated according to a proposal distribution qð�jxiÞ, which is
used to generate the next point of the Markov chain. Generally,
qð�jxiÞ is symmetric with respect to its arguments. The proposal
distribution governs the choice of the generated samples and con-
sequently the efficiency of the Metropolis algorithm. The point y is
accepted (i.e., xiþ1 ¼ y) with probability

a ¼ min 1;
pðyÞ
pðxiÞ

� �
: ð3Þ

The point y is rejected with the remaining probability (1� a), in this
case the state is not updated, i.e., xiþ1 ¼ xi.

Let the optimal importance sampling function in Eq. (2) be the
target distribution of the Markov chain. The acceptance probability
a is then given by

a ¼ 1½gðyÞ � 0�f ðyÞ
1½gðxiÞ � 0�f ðxiÞ : ð4Þ

It can be seen that the evaluation of Eq. (4) only requires the ratio of
the target distribution between consecutive states, and Pf is not
needed. This implies that the sequence of points fxig generated
by the above algorithm can populate the important region accord-
ing to the optimal sampling density function. This simulation proce-
dure can work equally well with problems with very small
probability of failure [5]. In this study, the multivariate Gaussian
distribution is chosen as the proposal distribution. The first 10% of
the samples in the Markov chain are discarded to eliminate the bias
due to the initially chosen starting points.

3. Solution to the problem of multi-dimensional moments

The moment-constrained maximum entropy problem yields an
estimate of a probability density with the largest entropy (i.e.,
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