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a b s t r a c t

Computing system reliability when system components are correlated presents a challenge because it
usually requires solving multi-fold integrals numerically, which is generally infeasible due to the compu-
tational cost. In Dutch flood defense reliability modeling, an efficient method for computing the failure
probability of a system of correlated components – referred to here as the Equivalent Planes method –
was developed and has been applied in national flood risk analysis. The accuracy of the method has never
been thoroughly tested, and the method is absent in the literature; this paper addresses both of these
shortcomings. The method is described in detail, including an in-depth discussion about the source of
error. A suite of system configurations were defined to test the error in the Equivalent Planes method,
with a focus on extreme cases to capture the upper bound of the error. The ‘exact’ system reliability
was computed analytically for the special case of equi-correlated components, and otherwise using
Monte-Carlo directional sampling. We found that errors in the system failure probability estimates were
low for a wide range of system configurations, and became more substantial for large systems with
highly-correlated components. In the most extreme cases we tested, the error remained within three
times the true failure probability. We provided an example of how one can determine if such error is tol-
erable in their particular application. We also show the computational advantage of using the Equivalent
Planes method; large systems with small failure probabilities which take over 17 h for Monte Carlo direc-
tional sampling were computed with the Equivalent Planes in less than one second.
� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

System reliability analysis investigates the probability that a
system will maintain its functionality; that is, the probability that
the system will not fail. Computing the failure probability of com-
plex systems, where the components within the system are corre-
lated, usually requires multi-fold integrals, which are generally
impossible to evaluate analytically. Consider a vector of random
variables, X ¼ ½x1; x2; . . . ; xn�, containing both load and strength
variables. The failure of the system is represented by the n-fold
integral:

Pf ¼
Z

XðXÞ
f XðXÞdX; ð1Þ

where f XðXÞ is the multivariate density function of X, and XðXÞ is
the failure space, consisting of all realizations of X that lead to

failure of the system. The configuration of the failure space depends
on how the components in the system are connected: in series, in
parallel, or in some hybrid combination. When connected in series,
which is typical in levee systems, XðXÞ ¼

S
iZiðXÞ < 0, where ZiðXÞ is

the limit state function of the ith component, and where failure of
each component is defined by ZiðXÞ < 0. Monte Carlo methods to
estimate the integral in (1) are typically prohibitively slow, espe-
cially in cases where evaluating the limit state functions requires
calls to finite element models.

A number of methods have emerged in the past decade to
address the need for efficient methods to compute system reliabil-
ity. Sues and Cesare ([1]) proposed a method (Most Probable Point
System Simulation, or MPPSS) in which the reliability of the system
components is first computed via a method that returns a closed
form of the limit state function (e.g. first- or second-order reliabil-
ity methods). The limit state functions, together with the Boolean
expressions defining failure, are then sampled in a Monte Carlo
framework. The authors claim that the size of the system is trivial
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because of the closed form of the limit state functions, but for
highly reliable components and/or large systems, it can require bil-
lions of samples to acquire the desired accuracy, making this
method potentially prohibitively time-consuming. Naess et al.
([2]) proposed a Monte-Carlo-based method in which some tail
properties of the distributions are used to substantially improve
efficiency. In a follow-up paper ([3]), they tested the method on
a large system with thousands of components and found an uncer-
tainty band in which the upper bound is approximately five times
the failure probability of the lower bound, for 200,000 samples and
a computation time of about 30 min to an hour. The method has
not yet been tested on systems in which the limit state function
requires calls to an intensive external model (e.g. a finite element
model), but will most likely be prohibitively slow given the num-
ber of samples required. Kang and Song ([4]) proposed an efficient
method (sequential compounding method, or SCM) in which the
reliability of the components is first computed, and the compo-
nents are subsequently combined into equivalent components,
two at a time, until the full system reliability is obtained. They
tested their method on various system configurations, and found
very good accuracy for all the configurations considered in the
paper. Chun et al. ([5]) presented a complimentary method to
SCM, which computes the sensitivity of the system failure proba-
bility to the reliability indexes of the components. The method
does not consider the sensitivity of the system failure probability
to the random variables that influence the component reliability
indexes.

In the Netherlands, the reliability of flood defense systems has
been a key research area for decades. Based on a series of papers
from the 1980s ([6–9]), an efficient method for combining the fail-
ure probabilities of correlated components – referred to here as the
Equivalent Planes method – was developed for series systems and
implemented in reliability software for the Dutch flood defense
system ([10,11]). We want to emphasize that the method was
designed for series systems (as flood defense systems are primarily
connected in series); two components connected in parallel within
a system that is primarily connected in series poses no problem,
but the method is not intended for systems of numerous compo-
nents all connected in parallel. Similar to the MPPSS method of
Sues and Casare ([1]), the Equivalent Planes method first computes
the failure probability of the components, and then replaces their
limit state functions with closed-form expressions for subsequent
combining. While the MPPSS method allows generic mathematical
formulation, the Equivalent Planes method is restricted to lin-
earized forms of the limit state function (hyperplanes). In contrast
to the MPPSS method, the Equivalent Planes method does not rely
on Monte Carlo methods. Similar to the Sequential Compounding
method from Kang and Song ([4]), the Equivalent Planes method
combines components sequentially; they differ most notably in
the method to derive the correlation between a combined compo-
nent and the remaining system components. To accomplish this,
the Equivalent Planes method requires information about the auto-
correlation of the underlying random variables contributing to fail-
ure; the Sequential Compounding method only requires the
correlation between components.

The Equivalent Planes method was developed to simultane-
ously meet two requirements for Dutch flood defense reliability
modeling: fast computation for large highly-reliable systems, and
the ability to compute influence coefficients of both the random
variables and the components. These influence coefficients are crit-
ical in Dutch flood defense reliability modeling on two fronts: (1)
in deltas, where the flood defense system is subjected to loads fluc-
tuating at different time scales, the influence coefficients are
needed to scale the failure probability from the time scale of the
highest-fluctuating load to the time scale of interest ([11]), and
(2) they give flood defense managers a clear overview which

variables, levee segments, or failure mechanisms are contributing
the most to the failure probability and require the most attention.

In the Netherlands, the results of the method – the failure prob-
ability of a system of flood defenses – have been used in national
flood risk analysis, on which major decisions about the safety stan-
dards of the defenses have been based ([12–14]). However, the
accuracy of the Equivalent Planes method for large systems has
never been well investigated. Additionally, although the method
is in long-standing use, it remains absent from the literature.
This paper serves thus two purposes. The first is to document the
method in the literature, and the second is to set up a suite of aca-
demic system configurations which we can use to investigate the
accuracy of the method.

The paper is laid out as follows. We first describe the Equivalent
Planes method in Section 2; we then discuss the source of error in
the Equivalent Planes method in Section 3; in Section 4 we
describe the various system configurations that we define for
investigating error propagation and show the performance of the
Equivalent Planes method for these systems; we discuss the idea
of tolerable error in Section 5, and close with discussion and con-
clusions in Section 6.

2. Equivalent Planes method

The Equivalent Planes method computes the failure probability
(Pf ) of a system of two correlated components, and – by applying it
iteratively – the failure probability of a system of any number of
components. The ith component is described by a limit state func-
tion, Zi; failure occurs whenever Zi < 0. The method starts with
two components, connected in parallel (Eq. (2)) or in series (Eq.
(3)). Often these components are correlated; that is, failure of
one component will influence the failure probability of the second
component.

Pf ¼ PðZ1 < 0 \ Z2 < 0Þ ¼ PðZ1 < 0Þ � PðZ2 < 0jZ1 < 0Þ ð2Þ

Pf ¼ PðZ1 < 0 [ Z2 < 0Þ ¼ PðZ1 < 0Þ þ PðZ2 < 0Þ � PðZ1 < 0 \ Z2 < 0Þ
ð3Þ

The strategy of the Equivalent Planes method is to replace the
conditional probability PðZ2 < 0jZ1 < 0Þ with an equivalent
marginal distribution PðZ02 < 0Þ which incorporates the condition
Z1 < 0 by having a non-zero density only in the failure space of
component 1.

We will describe how the equivalent marginal distribution is
computed. But first we will highlight the required information
for getting started.

2.1. Getting started

To apply the Equivalent Planes method, we need to know the fail-
ure probability of each of the individual components and the corre-
lation between component failures. The latter is driven by common
variables. For example, consider a levee section along a river with
two failure modes – overtopping and internal erosion; the water
level in the river will influence the failure probability of both
components, creating correlation between them. To compute the
correlation between components, we need information about
the variables that cause the correlation: (i) their autocorrelation –
the correlation between a variable in component 1 and the same
variable in component 2 – and (ii) influence coefficients, which
describe how strongly each variable contributes to failure.

The autocorrelation of the variables can be equal to one in some
cases (e.g. variables – like water level – which contribute to differ-
ent failure modes at the same location will be the same for each
failure mode). In other cases (consider soil permeability in two
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