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a b s t r a c t

This paper describes the use of a clustering approach based on hidden Markov random field to extract
potential homogeneous segments from a large length right-of-way of a pipeline structure with heteroge-
neous soil properties. This approach extends the conventional finite mixture model so that the spatial
correlation of external corrosion sites can be taken into consideration. An algorithm is established for
classifying corrosion defects using soil properties from an in-situ survey and location information from
in-line inspection reports. The categorized corrosion defects reveal the hidden patterns of corrosion
degradation in different segments along a pipeline structure. Stochastic simulation is employed to test
this clustering approach. An example involving a 110-km pipeline interval is employed to illustrate
the implementation of the clustering approach. The results indicate that the process of external corrosion
propagation in a buried pipeline is position-dependent and is highly related to the soil environment. In
addition, the results show that this phenomenon can be interpreted by segmentation using the proposed
clustering method. A clustering-based inspection strategy is discussed as a way to apply the present
approach.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

An underground pipeline is a superior choice for the
long-distance transportation of oil, gas and other products for
downstream operations in the petroleum industry. However, soil
corrosivity can decrease the performance of pipeline protection
systems (i.e. direct protection such as coatings, as well as protec-
tion from an external source such as cathodic protection) to vary-
ing degrees and can produce external corrosion defects that may
lead to failure conditions [1].

Metal deterioration in corrosive environments has been well
studied for specific types of corrosion and materials during the last
few decades. Several approaches (e.g., deterministic approach [2,3],
probabilistic models [4–7] and data mining approach [8,9]) are
applied to illustrate corrosion propagation on metal surfaces. For
the progression of pitting corrosion in pipeline structures, a com-
prehensive review is available in [10]. It is well known that the cor-
rosivity of the surrounding soil as well as the physicochemical
characteristics of materials will greatly affect the degradation rate

[11,12]. In the context of a buried pipeline structure, because a
pipeline is typically very long, the soil properties along the pipeline
right-of-way could vary to a significant degree. Hence, the external
corrosion propagation is position-dependent. In terms of probabil-
ity and stochastic process for assessing the corrosion propagation,
a notable limitation of some previous models [13–15] is the lack of
consideration of the spatial variability of soil properties.

For considering the spatial variation of the soil corrosivity along
a pipeline infrastructure, a practical approach is to divide the pipe-
line into equal segments named zones. Each zone has a set of phys-
ical and chemical properties of the soil surrounding the pipeline
structure. The corrosion depth can be measured and located with
an in-line inspection (ILI) device; hence, each sized defect is linked
with a zone and its soil properties. All the soil properties form a
high-dimensional feature space, and the defects are mapped into
the feature space as vectors. Clustering techniques should be
employed to discover the intrinsic structure or hidden pattern of
data points in the feature space. As the soil properties within each
cluster will have high similarity, it is relatively easy to estimate the
probability distribution of the corrosion depth within each cluster.
Several clustering techniques have been successfully applied to
extreme wind speed analysis [16], structural vulnerability analysis
[17,18] in civil engineering and external corrosion in pipeline
structures without considering spatial correlation [19]. However,
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it is novel to go one step further and apply a clustering approach
that considers spatial correlation in assessing external corrosion
in a pipeline structure.

Since the corrosion growth of defects that are close to each
other may be similar, spatial correlation could apply a certain
constraint to the corrosion propagation. The hidden Markov ran-
dom field (HMRF) is introduced here to handle the spatial con-
strained problem because it provides a convenient way of
formulating an extension of a finite mixture model for spatially
dependent data [20]. The merit of the HMRF derives from
Markov random field (MRF) theory, in which the spatial informa-
tion is encoded through the constraints of the neighborhood
configuration, as we expect neighboring defects to have the
same class label and a similar corrosion degradation process.
The configuration of the state sequence (i.e. the sequence of
cluster labels assigned to the defects) of HMRF is unobservable,
but it is able to be inferred through a random field of features
(i.e., the soil properties) [21]. HMRF is a powerful tool for con-
sidering spatial correlation in image segmentation [22–25], and
in this work, we apply it in the context of assessing the external
corrosion of a pipeline.

In the present work, hidden Markov random field theory and
the finite Gaussian mixture (FGM) model are employed to develop
a clustering approach named the HMRF-FGM model, which can be
used to identify and extract segments with homogeneous soil
properties from a pipeline region with a large length and a hetero-
geneous soil environment. This approach is compared to the con-
ventional FGM model [20] to illustrate its accuracy and
robustness. By applying HMRF-FGM model, defect depth records
reported by two consecutive in-line inspections are classified into
groups corresponding to the homogeneous segments. The evolu-
tion of corrosion propagation within different segments is studied.
A cluster-based inspection strategy for improving the existing
maintenance policy is discussed as one of the potential applica-
tions of the present approach.

The present paper is organized into six sections. In Section 2, we
describe the framework of the clustering approach. A parameter
study and robustness assessments of HMRF-FGM are performed
in Section 3. The HMRF-FGM is applied to a real life pipeline struc-
ture in Section 4. A clustering-based inspection strategy and some
potential issues are discussed in Section 5, and conclusions are pre-
sented in Section 6.

2. Framework of the clustering approach

In the framework for the clustering approach, we consider
L ¼ f1;2;3; . . . ; lg as the set of states (i.e. the cluster ID of a defect).
Let S ¼ f1;2;3; . . . ; sg be a finite index set, and we shall refer to the
set S as the set of locations or sites of all the defects from the start
point to the end point along the interval of interest in the pipeline.
Now let Xj ¼ fxjjxj 2 Lg be a state space of a particular site j 2 S.
Then the product space X ¼

Qs
j¼1Xj ¼ Ls is defined as the configura-

tion space. The state values of all the sites x ¼ ðx1; x2x3; . . . ; xsÞ are a
configuration in the product space X. The configuration is consid-
ered as a random field p(x). Then, let us consider a second random
field p(y), the state space of which is also a product space and is

denoted as Y ¼
Qs

j¼1Yj;Yj ¼ fyjjyj 2 Rdg, and y ¼ ðy1; y2y3; . . . ; ysÞ
is a realization of p(y). In the context of pipeline corrosion, the ran-
dom variable Y is a random vector of the soil features and the

d-dimension space Rd is the feature space formed by all soil
properties.

Suppose a defect at site j is assigned with a certain label l (i.e.
defect j belongs to cluster l). The probability of the observation of
local soil properties yj will follow a conditional probability
distribution:

pðyjjxj ¼ lÞ ¼ f ðyjjhlÞ; l 2 L ð1Þ

where hl is the set of distribution parameters. It is worth noting that
for all l 2 L, the distribution family f ð�; hlÞ has the same known ana-
lytical form.

In this work, we employ the finite Gaussian mixture (FGM)
model as the conditional probability distribution. Before the
derivation of HMRF-FGM model, we must first briefly introduce
the FGM model.

2.1. Finite Gaussian mixture model

We suppose that all the defects can be classified into l clusters.
The density f ðyjÞ of Yj can be written in the form

f ðyjjUÞ ¼
Xl

i¼1

pif iðyjjhiÞ ð2Þ

where pi are nonnegative quantities that sum to one and are
referred to as the mixing proportions or weights. pi are independent
of the individual defect j 2 S. The f iðyjjhiÞ are referred to as the com-
ponent densities. Here, we use multivariable Gaussian distribution as
the component density i.e. hi ¼ ðli;RiÞ; i 2 L where l is a vector that
contains the mean of every feature and R is the covariance structure
of all the features, which is defined in [26]. We take U as the param-
eter set of the mixture model U ¼ fpi; hiji 2 Lg. This is so-called
finite Gaussian mixture model.

The standard finite Gaussian mixture model presented in Eq. (2)
is widely used in unsupervised clustering [20]. However, it is not
considered to be a complete model in spatially-constrained prob-
lem, as it only describes the data statistically and there is no spatial
information involved in this framework. In Eq. (2), we notice that
the mixing proportions are spatially independent, which means
the probability of a defect’s belonging to a certain cluster is
homogenous along the entire pipeline interval. To overcome this
drawback of the FGM model, a clustering model that is adaptive
to spatial information based on hidden Markov random field model
will be presented.

2.2. Hidden Markov random field – Finite Gaussian mixture model

A typical HMRF has the following three characteristics [25]:

(1) The configuration of all sites x ¼ ðx1; x2x3; . . . ; xsÞ; i.e. the
clustering result, is unobservable.

(2) The observable random field p(y|x) is called the observed or
emitted random field given any particular configuration
x ¼ ðx1; x2x3; . . . ; xsÞ.

(3) A typical conditionally independent assumption is adopted
that has the expression:

pðyjxÞ ¼
Ys

j¼1

pðyjjxjÞ ð3Þ

The conditionally independent assumption still guarantees the
Markovianity of the random field pðx; yÞ [21]. More complicated
assumptions might also be considered [20].

Based on the above, the joint probability of (X, Y), i.e. a cluster-
ing configuration and the corresponding observations of soil prop-
erties, has the form

Pðx; yÞ ¼ PðxÞPðyjxÞ ¼ PðxÞ
Ys

j¼1

pðyjjxjÞ ð4Þ

According to Gibbs models [22], the probability distribution func-
tion of a certain configuration of sites x ¼ ðx1; x2x3; . . . ; xsÞ has the
form:
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