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a b s t r a c t

Joint probabilistic characteristics of key structural demand variables due to intense ground shaking are
important for quantitative seismic loss estimation. Current damage–loss models require inputs of multi-
ple seismic demand parameters, such as maximum/residual inter-storey drift ratio (ISDR) and peak floor
acceleration (PFA). This study extends current seismic demand estimation methods based on incremental
dynamic analysis (IDA) by characterising dependence among different engineering demand parameters
(EDP) using copulas explicitly. The developed method is applied to a 4-storey non-ductile reinforced con-
crete (RC) frame in Victoria, British Columbia, Canada. The developed multi-variate seismic demand
model is integrated with a storey-based damage–loss model to assess the economic consequences due
to different earthquake loss generation modes (i.e. non-collapse repairs, collapse, and demolition).
Results obtained from this study indicate that the effects of multi-variate seismic demand modelling
on the expected seismic loss ratios are significant. The critical information is the limit state threshold
for demolition. In addition, consideration of a realistic dependence structure of maximum and residual
inter-storey drift ratios can be important for seismic loss estimation as well as for multi-criteria seismic
performance evaluation.
� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

An accurate assessment of potential impact of future
destructive earthquakes is essential for effective disaster risk
reduction. Probabilistic seismic risk analysis (PSRA) entails the
state-of-the-art understanding of regional seismic hazard informa-
tion, such as possible scenarios and likelihood of destructive shak-
ing intensity, and seismic vulnerability of structures, such as
damage accumulation and loss generation [1–4]. Using probabilis-
tic calculus, PSRA evaluates the potential damage and loss that a
certain group of structures is likely to experience due to various
seismic events. Two key components in PSRA are structural capac-
ity modelling and seismic demand characterisation. A structural
model that is used in the assessment is required to be capable of
simulating a wide range of structural behaviour from damage
initiation to collapse. In particular, realistic representation of ulti-
mate damage states and failure modes is of critical importance.
The complexity and hysteretic characteristics of structural systems
in interaction with ground motions having different amplitudes
and frequency content result in large uncertainty associated with
seismic fragility. Several studies have attempted to quantify such

uncertainty and assessed their impact on structural response pre-
diction [5–7].

Parameterisation of earthquake damage and loss generation
processes has major influence on the computation and modelling
of EDP that is adopted as structural response variable for damage
and loss assessment. Typical EDP parameters include the maxi-
mum ISDR and PFA for structural and non-structural components
[8,9]. In addition to transient EDP parameters, residual ISDR may
be a critical parameter in determining the usability of damaged
structures in a post-earthquake situation [10–12]. In PSRA, EDP is
either uni-variate or multi-variate. When a scalar parameter that
correlates well with damage severity is employed, detailed proba-
bilistic models are developed using seismic demand estimation
methods, such as IDA [13]. The multi-variate case is often imple-
mented using fragility models for different types of damage sensi-
tivity (e.g. drift-sensitive versus acceleration-sensitive). However,
fragility curves for different EDP parameters are evaluated sepa-
rately and thus dependence of EDP variables for a given seismic
intensity measure (IM; e.g. spectral acceleration) is not taken into
account explicitly. Ruiz-Garcia and Miranda [14] and Ramirez and
Miranda [9] highlighted that inclusion of residual drift as EDP, in
addition to maximum ISDR and PFA, can have major impact on
the economic consequence due to earthquake damage, because a
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severely-damaged building may be demolished due to expensive
repair costs. Moreover, performance matrices based on both max-
imum and residual ISDRs (denoted by MaxISDR and ResISDR,
respectively) have been proposed for use in seismic damage
assessment [11]. It is noteworthy that in the above-mentioned
studies, dependence of MaxISDR and ResISDR, which are physically
inter-related and thus statistically correlated, has not been elabo-
rated. Goda [15] and Uma et al. [16] investigated the joint proba-
bilistic modelling of the two inter-related parameters using
inelastic single-degree-of-freedom systems. However, rigorous
evaluation of joint probability distributions of MaxISDR and
ResISDR for realistic multi-degree-of-freedom systems has not
been carried out. Therefore, further investigations of joint proba-
bilistic modelling of multiple EDP parameters are warranted to
consider different modes of damage and loss generation.

This study investigates the joint probabilistic modelling of mul-
tiple EDPs by conducting detailed characterisations of marginal
probability distributions for MaxISDR, ResISDR, and PFA and copula
models between MaxISDR and ResISDR. A copula technique offers a
flexible way of describing nonlinear dependence among
multi-variate data in isolation from their marginal probability dis-
tributions, and serves as a powerful tool for modelling
nonlinearly-interrelated multi-variate data [17,18]. The method
is applied to a 4-storey non-ductile RC building located in
Victoria, British Columbia, Canada. Seismic vulnerability of
pre-1970 buildings constructed in British Columbia remains to be
a major concern because of the use of older design codes and poor
construction practices (e.g. lack of column confinement and poor
detailing) at the time of design and construction [19,20].
Moreover, Victoria is situated in an active seismic region, affected
by complex regional seismicity due to shallow crustal earthquakes,
deep inslab earthquakes, and mega-thrust Cascadia subduction
earthquakes [21,22]. Seismic demand modelling is conducted
based on IDA by developing a probabilistic relationship between
IM and EDP. To avoid bias due to excessive record scaling in assess-
ing seismic performance of a structure, a multiple conditional
mean spectra (CMS) method is implemented by reflecting regional
seismic hazard characteristics in British Columbia [23,24]. The
developed multi-variate seismic demand model is then integrated
with a storey-based damage–loss model for non-ductile RC frames
[9] to evaluate the effects of incorporating ResISDR in PSRA and
dependence modelling between MaxISDR and ResISDR on earth-
quake loss generation (including demolition). The novel contribu-
tions of this study are: (i) copula-based multi-variate modelling
of EDP parameters is developed for a realistic structural model,
and (ii) the impact of multi-variate seismic demand modelling is
assessed in terms of expected seismic loss and seismic perfor-
mance metrics. The former essentially extends the current
IDA-based seismic demand modelling approaches.

The paper is organised as follows. A brief summary of copula
modelling is presented in Section 2. Section 3 introduces an overall
seismic risk analysis framework (Section 3.1), followed by descrip-
tions of finite-element modelling of the 4-storey non-ductile RC
frame (Section 3.2), regional seismic hazard information in British
Columbia (Section 3.3), IDA and seismic demand modelling
(Section 3.4), and storey-based damage–loss assessment
(Section 3.5). In Section 4, results of multi-variate seismic demand
modelling for the non-ductile RC frame in Victoria are discussed,
and its effects on seismic loss are evaluated quantitatively. Finally,
main conclusions from the investigations are mentioned in
Section 5.

2. Dependence modelling using copulas

Consider the joint probability distribution of two random vari-
ables X1 and X2, H(x1,x2) = P[X1 6 x1,X2 6 x2], continuous marginal

probability distributions of which are denoted by F1(x1) (=u1) and
F2(x2) (=u2), respectively. u1 and u2 represent a sample of a stan-
dard uniform random variable U1 and U2, respectively, and P[�]
represents the probability. Sklar’s theorem dictates that a relation-
ship among H(x1,x2), F1(x1), and F2(x2) can be established by using
the copula function C(u1,u2) [17]:

Hðx1; x2Þ ¼ CðF1ðx1Þ; F2ðx2ÞÞ ¼ Cðu1;u2Þ ð1Þ

The joint probability distribution of the two random variables can
be characterised by a copula function in terms of their marginal
probability distributions. An important implication of this theorem
is that marginal modelling and dependence modelling can be car-
ried out separately.

For given data X1 and X2, their dependence can be characterised
by the empirical copula CE(u1,u2):

CEðu1;u2Þ ¼
1
N

XN

m¼1

I
rankðx1;mÞ

N þ 1
6 u1;

rankðx2;mÞ
N þ 1

6 u2

� �
ð2Þ

where N is the total number of data, I(�) represents the indicator
function, and rank(x1,m) (or rank(x2,m)) is the rank of x1,m (or x2,m)
among x1 (or x2) in an ascending order. The empirical copula is a
non-parametric description of dependence for a pair of random
variables, which can be used for fitting various copula functions
to data. A dependence measure that is suitable for copula modelling
is the Kendall’s s coefficient:

sðX1;X2Þ¼ P ðX1� eX1ÞðX2� eX2Þ>0
h i

�P ðX1� eX1ÞðX2� eX2Þ<0
h i

ð3Þ

where (eX 1; eX2) is an independent copy of (X1,X2). The Kendall’s s
measure is rank-dependent and invariant under strictly monotonic
transformation.

In dealing with multi-variate data, the use of the normal and t
copulas within a class of the elliptical copulas is popular. The
bi-variate normal copula with the linear correlation coefficient q,
Cq

N(u1,u2), is given by:

CN
qðu1;u2Þ¼UqðU�1ðu1Þ;U�1ðu2ÞÞ

¼
Z U�1ðu1Þ

�1

Z U�1ðu2Þ

�1

1
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�q2

p exp �s2�2qstþ t2

2ð1�q2Þ

� �
dsdt

ð4Þ

where Uq(�) is the bi-variate standard normal distribution with q,
and U�1(�) is the inverse standard normal distribution. The
bi-variate t copula with q and the degree-of-freedom parameter m,
Ct
q,m(u1,u2), is given by:

Ct
q;mðu1;u2Þ ¼ tq;mðt�1

m ðu1Þ; t�1
m ðu2ÞÞ ¼

Z t�1
m ðu1Þ

�1

Z t�1
m ðu2Þ

�1

� 1
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p 1þ s2 � 2qst þ t2

mð1� q2Þ

� ��ðmþ2Þ=2

dsdt ð5Þ

where tq,m(�) is the bi-variate t distribution with q and m, and tm
�1(�)

is the inverse t distribution with m. Both normal and t copulas are
symmetrical, and the normal copula is a limiting case of the t copula
when m becomes infinity. The advantage of the t copula is that it can
capture lower and upper tail dependence of data (i.e. joint
non-exceedance and exceedance probabilities for rare events). For
the t copula, the other parameter m can be obtained by maximising
the log-likelihood function.

Another widely-used copula family is the Archimedean copula.
Popular Archimedean copulas include the Gumbel, Frank, and
Clayton copulas, whose copula functions are given by:

Chðu1;u2Þ ¼ exp � ð� ln u1Þh þ ð� ln u2Þh
h i1=h

� �
; h � 1 ð6Þ
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