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A B S T R A C T

A simplified and easy to implement approach for the solution of the static and dynamic stability of a Timoshenko
column with multiple partitions is derived in a classic and condensed manner. The proposed methodology in-
cludes a non-uniformly distributed axial load along the structural member which can represent the self-weight of
columns, chimneys, tall buildings or the axial load on piles induced by downdrag forces. The proposed model
includes the effects of shear deformations along the member and the second-order shear force induced by the
applied axial load as the member deforms. The effects of the self-weight on the structural member stability are
studied using the proposed approach and conclusions regarding the contribution of the self-weight and dis-
crepancies by neglecting it are presented. Three comprehensive examples including columns with weakened
sections, distributed axial loads arising from the self-weight, symmetrical tapered sections, and stepped cross
sectional members are included to validate and show the applicability of the proposed formulation.

1. Introduction

Generally, the effects of the self-weight are commonly neglected in
the static and dynamic analyses of columns subjected to axial forces at
the ends only. However, the behavior of tall buildings, chimneys, ta-
pered structures, heavy and slender columns is typically affected by a
combination of axial/self-weight and lateral loading interactions.
Consequently, traditional stability approaches tend to overestimate
critical buckling loads and erroneously predict the natural vibration
frequencies. Axial distributed loads arise not only from the weight of
column, but also from the loads carried by other attachments, lateral
supporting members attached to the column, and other dead or live
loads traveling through the column to the foundation level. These
loadings produce non-uniform distributed and concentrated axial
compression at various locations along the centroidal axis of the
column. Top chord members of trusses can display similar loading
conditions caused by axial forces transmitted from other connecting
members. Other applications in Civil Engineering include members of
variable cross-section and hence variable axial loading due to self-
weight, or piles under compression caused by downdrag forces as a
result of consolidation settlement of adjacent soils. The main objective
of this paper is to provide a simplified solution of easy implementation

in the analysis of Timoshenko columns subjected to axial load.
It is well-known that the governing differential equation of a

column of variable cross section or subjected to distributed axial
loading cannot be expressed in terms of constant coefficients [1]. So-
lutions to this problem have been provided in a closed-form only when
the bending deformations are small compared to those due to shear
loads (i.e., shear beam-column elements). For example, Aristizabal-
Ochoa [2,3] and Hernandez-Urrea et al. [4] introduced exact and
closed-form solutions for the analysis of shear beam-columns with
semirigid end connections considering the member self-weight and
lumped masses at the ends. Several formulations of this problem have
been reported but based on complex and tedious mathematical methods
to solve the governing differential equation. Timoshenko and Gere [1]
and Vaziri and Xie [5] presented solutions of classical cases of tapered
columns using Bessel functions or transforming a cantilever tapered
column into a boundary value problem solved by numerical integration.
These researchers concluded that the interaction between the critical
end axial forces and the critical distributed axial loads are linear. Ca-
tellani and Elishakoff [6] developed a closed-form solution for a simply-
supported column subjected to different types of distributed axial load
using auxiliary problems and integral methods. Duan and Wang [7]
introduced a mathematical method based on hyper-geometric functions
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to find the buckling loads for different classic column cases including
the effects of self-weight. Their work showed that the calculated
buckling loads are highly dependent on the boundary conditions. Ad-
ditionally, Darbandi et al. [8] presented a model of an Euler-Bernoulli
beam-column with elastic boundary conditions subjected simulta-
neously to transverse and longitudinal axial loadings treating the
column as a singular perturbation boundary value problem. A common
denominator of the available solutions is that the authors focus their
attention on the static analysis only, neglecting the effects of shear
deformations and forces, and also ignoring the principle of preserving
angular momentum.

An alternative to tackle this problem is using the transfer matrix
method. This method allows the use of a closed-form analytical solution
in which the coupled effects of axial load, angular momentum, and
bending and shear deformations can be accounted for explicitly in the
formulation of the governing differential equation. The formulation can
also include semirigid end connections, lateral bracings, and weakened
sections on the static or dynamic analysis of tapered or stepped columns
including their self-weight. This approach can also be used for the
second-order analyses of columns with the aforementioned character-
istics. In the past, Li [9–13] used this method to study the static and free
vibration analyses of prismatic columns considering an indefinite
number of weakened sections and lateral bracings. Takahashi [14]
studied the free-vibration and stability behavior of non-uniform
cracked Timoshenko columns using a transfer matrix in terms of a
coupled set of first-order differential equations. Later Li [15,16] pre-
sented an improved formulation for the static stability analyses of a
non-uniform column subject to distributed axial loads with an arbitrary
number of cracks and boundary conditions.

The main objective of this publication is to propose a dynamic
transfer matrix formulation capable of including the aforementioned
coupled effects in addition to those caused by variable cross sections
along the column with generalized boundary conditions of including
shear and bending deformations. The proposed formulation will pro-
vide the possibility to study the static and dynamic behavior of tapered
and stepped columns subject to concentrated and distributed axial loads
including also arbitrary number of weakened sections and lateral bra-
cings. Furthermore, the proposed dynamic transfer matrix is capable of
accurately and efficiently predicting the nonlinear effects of tapered
columns including its own weight under static and dynamic loads.
Three comprehensive examples are presented in detail that show the
efficiency and accuracy of this formulation, which at a reasonable
computation effort, compares well with other theoretical methods, fi-
nite element models and experimental results.

2. Structural model

Consider the column AB shown in Fig. 1(a) made of n-steps with
generalized end conditions. Each step is divided into m-segments due to
the presence of m− 1 notches. A typical step within the entire column
is shown in Fig. 1(b) which is subdivided in several sub-steps. The steps
are separated with lumped flexural springs of stiffness κij (where i and j
represent the step and a segment within the step, respectively). To
study the beneficial effects of lateral bracings or for example to model
the confinement provided by a soil mass around a weakened cross
section of a driven pile, lateral springs of stiffness Sij, were included in
the analytical formulation. The rotational weakened indices κij are
normalized with respect to the bending stiffness of the particular seg-
ment with the ratios Rij= κij/(EiIi/Li), which are denoted as the bending
stiffness indices of the rotational springs. These ratios allow the simu-
lation of any bending stiffness decay at any given sections of the column
ranging from Rij=0 to Rij=∞ for perfectly hinged and continuous
sections, respectively. Furthermore, the lateral bracings are normalized
with respect to the shear stiffness of the particular segment with the
ratios =S S A G L/( / )ij ij s i i i, which are denoted as the shear stiffness indices
of the lateral bracings. These ratios may vary from Sij =0 to ∞ for

unbraced members (or zero confinement provided at the weakened
section) and for perfectly braced structural members, respectively.

In the proposed formulation, it is assumed that each step of the
structural member is made of a homogenous linear elastic material with
Young and shear moduli Ei and Gi, respectively. The centroidal axis of
each column segment is to be assumed a straight line collinear with the
previous and subsequent segments, and axially loaded at its ends along
its centroidal x-axis with a constant load Pi (tension or compression).
The cross section of any column segment is to be assumed doubly
symmetric (which implies that its centroid coincides with its shear
center) and described by the gross area, Ai, effective shear area, Asi, and
principal second moment of area, Ii, about the plane of bending. In the
proposed approach, all transverse deflections, rotations, and strains
along the column are assumed to be relatively small, so that the prin-
ciple of superposition can be applied. Regarding the weakened sections
and lateral bracings or confinement, it is assumed that these sections
are perpendicular to the straight axis of the column as a whole and that
both the moment-rotation and force-deflection behaviors are perfectly
linear-elastic.

2.1. Governing equations

The static and dynamic behavior of the jth-segment of the multi-
weakened column is governed by the following equilibrium equations
at the differential element level shown in Fig. 1(c). The equations of
equilibrium (1) and (2) are expressed in terms of dimensionless para-
meters mi and ri (defined as the mass per unit length of the beam-
column and radius of gyration of its cross section; respectively).
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Assuming that E G A A m, , , ,i i i si i and Pi remain constant along step i
and that the applied axial loads induce additional shear forces, the
following relationships can be written:
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Since Eqs. (1) and (2) are coupled together, they can be reduced to a
single fourth-order differential equation in terms of the dimensionless
parameters listed in Table 1 as follows:
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An advantage of the proposed incremental stepped formulation
presented herein is that each variable is constant and thus, it does not
require complex mathematical formulations for its solution. This is
achieved by applying concentrated axial loads at the end of each seg-
ment that if accumulated, could be used to study the static and dynamic
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