Accepted Manuscript

Rehabilitation of Corroded Steel Beams Using BFRP Fabric

Sahan Jayasuriya, Amirezza Bastani, Sara Kenno, Tirupati Bolisetti, Sreekanta Das

PII: S2352-0124(18)30061-4

DOI: doi:10.1016/j.istruc.2018.06.006

Reference: ISTRUC 291

To appear in: Structures

Received date: 24 March 2018
Revised date: 20 June 2018
Accepted date: 21 June 2018

Please cite this article as: Sahan Jayasuriya, Amirezza Bastani, Sara Kenno, Tirupati Bolisetti, Sreekanta Das, Rehabilitation of Corroded Steel Beams Using BFRP Fabric. Istruc (2018), doi:10.1016/j.istruc.2018.06.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Rehabilitation of Corroded Steel Beams Using BFRP Fabric

Sahan Jayasuriya¹, Amirezza Bastani², Sara Kenno³, Tirupati Bolisetti⁴ and Sreekanta Das⁵

¹M.A.Sc. Candidate, Department of Civil and Environmental Engineering, University of Windsor, 401 Sunset Avenue, Windsor, Ontario,

²Ph.D. Candidate, Department of Civil and Environmental Engineering, University of Windsor, 401 Sunset Avenue, Windsor, Ontario,

Canada

³ Industrial R&D Fellow, MEDA Limited, 1575 Lauzon Rd, Windsor, Ontario, Canada

⁴Associate Professor, Department of Civil and Environmental Engineering, University of Windsor, 401 Sunset Avenue, Windsor,

Ontario, Canada

⁵Professor, Department of Civil and Environmental Engineering, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, Canada

Abstract

There are many structurally deficient parking garages, bridges, and other structures in service all around

the world. These bridges are in desperate need of replacement or rehabilitation. Flexural rehabilitation of

corroded steel beams using Carbon Fibre Reinforced Polymer (CFRP) and Glass Fibre Reinforced

Polymer (GFRP) have been studied in the past. However, studies have not been conducted on the

rehabilitation of corroded steel beams using Basalt Fibre Reinforced Polymer (BFRP). This research

examined the feasibility and effectiveness of using BFRP fabric for the rehabilitation of corroded steel

beams by performing lab tests and developing finite element models. The study found that both yield and

ultimate load capacities of a corroded steel beam can be fully restored provided sufficient thickness of

BFRP fabric is used. It may be difficult to fully restore the ductility of a corroded steel beam; however,

the ductility can be improved and the improvement depends on the thickness of BFRP fabric.

Keywords: rehabilitation; basalt fibre reinforced polymer fabric; corroded steel beam; load-deflection

behaviour; ductility; optimum thickness of fabrics; non-linear finite element modeling

*Corresponding author, Sreekanta Das, Ph.D., P.Eng (AB)

Email: sdas@uwindsor.ca

1

Download English Version:

https://daneshyari.com/en/article/6774309

Download Persian Version:

https://daneshyari.com/article/6774309

<u>Daneshyari.com</u>