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A B S T R A C T

There are “rules of thumb” for designing structural elements such as beams, columns and floors, which are
simple and effective. Such rules are familiar to most engineers and are widely used to develop quick preliminary
designs. Are there similar types of “rules of thumb” that can be used for conceptual designs to achieve smaller
deformations of whole structures or make such structures more effective, efficient and elegant? This article
demonstrates four conceptual solutions to reduce deflections of structures which are all related to internal forces.
Examples are provided to illustrate the use and effectiveness of the concepts, including some well-known
structures.

1. Introduction

For preliminary design of elements, structural engineers have often
used “rules of thumb” e.g. maximum span to depth ratios for beams.
Following preliminary sizing, the element design is refined according to
the requirements of the associated national design code etc. In devel-
oping whole structural form, consideration of the overall stiffness of the
structural system is important. The deflection of structures is a key
serviceability consideration and may often control design. As buildings
become taller and spans increase for bridges, roofs etc., the associated
deflections of these structures become a major design issue: the ques-
tion then arises of how best to design structures against deflections?
This article explores the potential of harnessing simple approaches akin
to the ‘rules of thumb’ common in element design, to produce efficient
whole-structure conceptual designs in regards to deflection.

At structural element level, many of the current design approaches
are based on the understanding of a simple equation for beams often
presented in textbooks as follows [1,2]:
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where Δmax is the maximum deflection, q is a distributed load, L is the
span, E modulus of elasticity and I the second moment of area of the
cross-section of the beam. The parameter α is a non-dimensional coef-
ficient relating to boundary conditions, for example, 5/384 for a simply
supported beam and 1/8 for a cantilever when q is a uniformly dis-
tributed load. Implementation of Eq. (1) for reducing deflection has
been seen in practice as outlined below following a “rule of thumb”
format:

a) Reducing span L: As the deflection is proportional to L to the power of
four, reducing span where possible is the most effective way to re-
duce deflection e.g. via provision of additional supports.

b) Increasing second moment of area I: This is normally applicable to
local members, such as using a larger cross-section or adding ma-
terial as far away as possible from the neutral axis of a given cross-
section to enlarge the I value effectively. Conceptually, a tall
building can be seen as a huge cantilever, the large second moment
of area of its cross-section can be achieved by reasonably arranging
the positions of columns and shear walls of the building.

c) Reducing α: This can be achieved by enhancing the boundary con-
ditions, such as changing pinned supports to fixed supports.
Alternatively, adding elastic supports to a structure is often adopted.
For example, the cables of a cable-stayed bridge provide elastic
supports to the deck, allowing long spans; in this case the bridge
deck can be seen as a beam on an elastic foundation.

At whole structure level, the maximum displacements of any pin-
connected structure and rigid frame structure are shown respectively in
Eqs. (2) and (3) [1,2]:
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where Ni and Ni are the axial forces of the ith member induced by the
actual loads and that by a unit load applied at the critical point where
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the maximum displacement is likely to occur respectively; Mi(x) and
M x( )i , similar to Ni and Ni , are the bending moment of the ith member
induced by the actual loads and by a unit load at the critical point
respectively. Li, Ei, Ai and Ii (i=1, 2, …, s) are the length, Young's
modulus, area and second moment of area of the cross-section of the ith
member respectively.

Eqs. (2) and (3) provide a method for calculating the deflection of
any structures with pinned or rigid connections. Eq. (2) is suitable for
trusses, scaffoldings and lattice structures, and has a history of over
150 years [3]. However, Eq. (2) is often given a lack of emphasis in
many current textbooks on Mechanics of Materials and Structural
Analysis. This is because it requires obtaining the internal forces Ni and
Ni before calculating the displacement, such a calculation may be re-
garded as too tedious. Normally very simple statically determinate
plane trusses are provided to show how Eq. (2) is used [1,2]. In dif-
ference to Eq. (1), implementation of Eqs. (2) and (3) for reducing the
maximum displacement of a whole structure is not well known. This
article demonstrates four rules of thumb for whole structure behaviour
which are analogous to those described for Eq. (1). These are intuitively
interpreted based on Eqs. (2) and (3) and application of each rule of
thumb is illustrated by examples in sections 3 to 6.

2. Theoretical basis for designing structures against deflection

It is difficult to identify the physical essence of Eqs. (2) and (3). This
is because Ni and Mi(x) (i=1, 2, …, n) are functions of loading that can
have many variations. If we consider the worst loading scenario
whereby all the loads on the structure are lumped at the critical point at
which the largest deflection is likely to occur. Then the load is nor-
malised to a unit. This loading is not true but the worst scenario for
deflection is considered consistently for all structures to be discussed.
The critical points of some structures can be easily identified. For ex-
ample, for a horizontal cantilever, the critical point for a vertical load
would be at the free end of the cantilever; for a simply supported rec-
tangular plate, it would be at the centre of the plate for a vertical load;
and for a plane frame supported at its base, it would be at the top of the
frame for horizontal loading.

This treatment of loading removes any possible variation of loads
and allows focus to be on the behaviour of the structures. For calcu-
lating the deflection at the critical point, the normalised unit load and
the unit force act at the same critical point. Thus Ni becomes Ni and
Mi(x) becomes M x( )i for the normalised unit load and Eqs. (2) and (3)
can be represented as:
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The integration ∫ M x dx( )L
i0
2i describes the area under the curve

M x( )i
2 , which in turn can be represented by the area of a rectangle with

a length L and a mean height Mm i,
2 . Therefore, Eq. (5) can be equally

expressed as:
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Now Eqs. (4) and (6) have similar mathematical forms. The physical
meaning of Δmax in Eqs. (4) to (6) is the inverse of the static stiffness of
a pinned structure or a rigid frame structure [4,5], and in a more
general sense, Δmax is the largest coefficient in a flexibility matrix, i.e.
the inverse of the stiffness matrix, of any truss or beam type of structure
[6]. Intuitively, if a structure has a larger static stiffness or smaller
largest flexibility coefficient, the structure would have a smaller de-
flection. Instead of conducting any particular calculation, we can in-
tuitively interpret Eq. (4) to capture the physical essence of the

relationship, which can provide a basis for practical application.
It can be noted that all terms on the right side of Eq. (4) are positive.

If Li/EiAi does not change significantly for all members, from Eq. (4) we
can make the following observations towards achieving smaller de-
flections [4,5]:

• For Δmax to be smaller, the many positive terms on the right-side of
Eq. (4) should be zero in a mathematical sense, in other words,
many Ni , i.e. the internal forces in the members, are zero. This
corresponds to the physical scenario that the load acting at the most
unfavourable location is transmitted to the supports of the structure
without passing through these zero force members. In other words,
the load goes through a more direct or shorter internal force path.

• The other way to make Δmax smaller is to make all the positive items
on the right-side of Eq. (4) smaller. This corresponds to the state of
smaller internal forces.

• As the square of a larger term will contribute more significantly to
Δmax than other smaller terms on the right-side of Eq. (4), to achieve
smaller Δmax , the value of the internal force, N| |i , of the ith member
should not be much larger than other internal forces. This corre-
sponds to the scenario that a structure should have more uniformly
distributed internal forces to achieve smaller deflection.

These observations and interpretations can be represented in a more
concise and memorable way in terms of structural concepts as follows
[4,5]:

i. The more direct the internal force path, the smaller the deflection.
ii. The smaller the internal forces, the smaller the deflection.
iii. The more uniform the distribution of internal forces, the smaller the

deflection.

The same can be obtained from Eq. (6). When internal forces of a
structure contain bending moments and axial forces, both Eqs. (4) and
(6) need to be used and the displacements are added up. It has been
noted that the displacement derived from bending moments is often far
larger than that from axial forces. Therefore, the fourth concept is

iv. The more bending moments being converted to axial forces, the
smaller the deflection.

The above four statements are abstracted from Eqs. (4) and (6) with
an artificial concentrated load rather than the actual loading in Eqs. (2)
and (3) that are used to calculate the actual deflections at a given
loading. Similar to Eq. (1), Eqs. (4) and (6) are used to draw qualitative
conclusions and reveal the physical essence of structural behaviour.

Eq. (1) can also be represented as:
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where β is a constant, for example, 64 for a simply supported beam and
4 for a cantilever when q is a uniformly distributed load. Eq. (7) shows
qualitatively that reducing span is equivalent to reducing the maximum
bending moment, which corresponds to the second concept/statement
above. The significance of Eqs. (4) and (6) is that they represent whole
structures rather than structural members and that the concepts de-
duced are applicable to all types of structure whose internal forces are
represented by axial forces and bending moments.

The four structural concepts or statements all deal with internal
forces and provide a fundamental basis for designing structures against
deflections and for developing different physical measures to achieve
desired internal forces that lead to smaller deflections and more effi-
cient structures. The four statements are also reversible as they are
abstracted from Eqs. (4) and (6). In other words, limiting deflection will
lead to more direct internal force path, smaller internal forces, more
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