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A B S T R A C T

This paper presents a new strut-and-tie model on steel fiber reinforced concrete (SFRC) members under uniform
(Saint Venant) torsion. This truss model is intended to reproduce the structural behavior in ultimate limit state,
once concrete is cracked. The proposed model is based on previous formulations developed by other researchers;
the main novelty is the use of average value linear interpolation methods. The developed model can be con-
sidered for constant section members; can be applied to rectangular, T, L, circular, thin-walled, and single-cell
and multi-cell hollow sections, among other shapes. Comparison with experimental and numerical results (de-
veloped through accurate finite element analysis) shows that the proposed model is more accurate than the
proposed formulations.

1. Introduction

The fiber reinforced concrete technology has developed over
30 years, which has been used in some important cases of engineering
applications, such as tunnels, highways and subway segments. It has
been proven to be an applicable alternative for the conventional steel
reinforcement in construction practices. For example, in Holland and
Belgium [1,2], there were the elevated floors constructed by fiber re-
inforced concrete, which were tested to have higher performance on
strength, deflection and ultimate strength than conventional RC mem-
bers. The most efforts having done are the mechanical behavior in
concrete which formed to be the constitutive laws in the main princi-
ples of FRC theory. Previous experiments have been focused on the
flexibility, prismatic testing under tension, shear capacity and dynamic
mechanical behavior [3–5]. Due to demands of structural design of steel
fiber reinforced concrete arising, FRC has many potentials on future
application. We intended to investigate torsional behavior of FRC, our
purpose of this campaign was to find the best estimations of mechanical
principles of FRC. Torsion is a common kind of mechanics existing in
many structures, and torsional behaviors have always been found to be
the combination of flexibility and shear, or the combination of bending
and tension [6,7]. Since torsion is an important factor that affects
structural safety, it is necessary to find a more suitable model to de-
scribe members subjected to torsion, in order to make accurate struc-
tural design possible, when fibers are applied in practice. Due to lim-
itations of fiber reinforced concrete theories, none of standard codes on

design process of fiber reinforced concrete has been published. Fiber
committee has published the guidelines on the FRC structure design
process, in order to enhance the probability on using FRC for structure
[6]. But in many experiments, existing model fails to accurately predict
torsional behavior of SFRC. Thus, we desired to improve accuracy and
to modify existing model. Furthermore, in this paper we prepare to
compare results of the fiber reinforced concrete subjected to the pure
torsion to find out the most suitable methods of evaluating the torsional
mechanics and finite element simulation. This new model of steel fiber
reinforced concrete members subjected to pure torsion has featured the
most suitable model on predicting service limited state and ultimate
limited state when members are under pure torsion condition.

2. Torsion of members

2.1. Pre-cracking behavior

The basis of members subjected to torsion is shear flow theory, an
assumption that the cross section is enclosed by shear flows when
member is subjected to torsion. The Fig. 1 and Fig. 2 are shown as
follows:
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where φ is the angles between two sections, φ′is rate of twist; a, b are
longer and shorter dimensions of cross section, respectively. G, It is
torsion module and inertial product; γ is poison's ratio. Once the tension
strength exceeded (τx= fcm), the shear crack appears in the shear unit,
seen from Fig. 2. (See Figs. 3 and 4.)

These formulations are used for predicting the torsion and de-
scribing of the rate of twist, where T is torque applied on unit; E is
elastic module tensor, according to Eq. (1), shear stress is obtained,
which is suitable in elastic deformation stage.
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αabm 2 (1)

Regarding the RC beam under torsion, a theory based on the pre-
cracking Saint Venant theory and compression field theory was pro-
posed by Mitchell and Collins (1974) [8]; Then, Vecchio and Collins
(1999) proposed simplified theories [9,10] for calculating shear
strength, which is based on the development of Truss-Strut model of
torsion and thin tube shear resistance calculation. In this theory, he
proposed that after cracking, the concrete will not carry tension but
torsion will be carried by the field of diagonal compression. Some as-
sumptions and models are shown as follows:

The circulatory shear q acting uniformly along the thickness td re-
sists the external torque T. The element A is subjected to a shear stress
of equal to q/td. The shear flow q enclosed the area A0, then the re-
lationship of torque T and q is obtained from T\2q. The beam is curved
under torque and no longer remained plane surface. When torsional
strength reaches the cracking strength, diagonal helical cracks are de-
veloped near the cross section, after cracking, analogy of truss-strut
theory is proposed for predicting torsional behavior resulting from
shear stress flow developing around shear stress zone with a thin

effective width. The diagonal strut curved and the capability, strain and
curves related to twist of beam are obtained from Mohr's circle, it is
shown as follows:

= =φ ψ Sin α ε
t

. 2 ds

d (2)

Based on such assumption, Hsu et al. (1988) [11] proposed the
shear stress equilibrium equations considering the effect of FRP, which
were deduced:
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where σd is the principle compressive stress; α is the inclination angle of
the diagonal compression struts (crack angle); τlt is the shear stress; ρsl.
and ρst are the longitudinal and transverse steel reinforcement ratio,
respectively; fsl, fst, ffs and fft are the stress of steel reinforcement and
FRPs in FRP, longitudinal and transverse directions; ρfl and ρft are the
ratios of the FRP materials in longitudinal and transverse directions,
respectively.

The formulation of members subjected to torsion is based on the
linear elastic theory proposed by Saint Venant in early 20th century.
The torsional behavior is found normally in the beams or slabs, or
beam-slab joints. Some reasons causing torsion are forces produced by
the other parts of structures, furthermore, because of the eccentric loads
influencing at the slabs or floors which produces twist angles at the
ends of beams elements. Tensile strength of concrete is much lower
than the maximum compressive strength of plain concrete. In strut-and-
tie models, the stress tension and compressive stress form the magni-
tude 45 degree to axis of member, forming a helix at the 450 angles to
the axis of beam. Equations are shown as follows:
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b is the breadth of beam, d is the depth of beam,α is 0.208 actually
influenced by dimensions ratio,ƒt is the maximum tensile strength. The
result obtained by Eq. (4), denoted SLS1.

The Eq. (4) was tested to be limited in predicting the basic elements
subjected to torsion. Then, considering the plastic theory used in
equation, it is shown as follows:
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where ƒ't is the maximum tensile strength, x,yare dimensions of cross-
section, respectively. Results obtained from Eq. (5), denoted SLS2.

The reinforcement in the matrix of member is a significant factor to
improve torsional performance. It has been extensively tested in pre-
vious research about FRC focusing on fibers improving the ultimate
strength of member after post-cracking response, which are described in
many literatures [12–18]. Therefore, fiber should be considered to af-
fect the FRC torsional behavior in this paper.

3. Existing truss models for the members subjected to torsion

3.1. Post-cracking behavior

In the post-cracking stage, the concrete is considered to be the
significant contributors when it is subjected to the loads. Elastic theory
is often used for predicting the cracking strength which means the
maximum strength in Serviceability Limit State (SLS). Likewise, the
ultimate limit state of fiber reinforced concrete (ULS) is the maximum
strength in post-cracking response, in which the stress after post-
cracking stage reaches the maximum tensile stress. In this paper, SLS1,
SLS2 are denoted as cracking strength by different formulations and
names of each formulation as well, respectively; There are some spe-
cified formulations proved to be effective in predicting cracking

Fig. 1. The coordination of units under torsion.

Fig. 2. Shear stress of unit.

Fig. 3. Cracked beam under torsion.
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