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A B S T R A C T

The beam-column members are widely used in civil structures. These members are subjected simultaneously to
the axial load and the bending moment. In this paper, the buckling strength and the bracing stiffness require-
ment of the mono-symmetric beam-columns with discrete lateral bracing have been investigated. For this pur-
pose, a numerical method based on the finite element analysis is developed to calculate the buckling load-set of
the mono-symmetric beam-columns. This proposed method is capable to consider the initial geometric im-
perfection. The proposed method is compared with the results of experimental and numerical studies obtained
by previous researchers and the spatial finite element analysis, which it shows good agreement. Also, by using
the matrix form of the energy equation, a closed form solution of the bracing stiffness requirement is suggested
for an arbitrary number of bracing points. The P-M interaction curve and formula are presented for mono-
symmetric beam-columns. The results show that the peak point of the curve occurs at the P=Pey and M=Peyy0,
where Pey is Euler's buckling load. Finally, a parametric study is done to investigate the effects of the eccentricity
and degree of mono-symmetry on the buckling strength and bracing stiffness requirement.

1. Introduction

Beam-column refers to a structural member that is subjected si-
multaneously to the axial load and the bending moment [1]. In beam-
columns, both bending moment and axial load interactively affect the
buckling behavior. This effect depends on the boundary and loading
conditions. Lateral bracings can be increased the buckling strength of
the beam-columns. Furthermore, the buckling behavior of the mono-
symmetric sections is different from the doubly symmetric sections.
Therefore, study of the buckling behavior of laterally braced mono-
symmetric beam-columns gives some thoughts on the stability criteria.

Winter [2], Galambos [3], Timoshenko and Gere [4], Pincus [5] and
Trahair [6] had done oldest studies on behavior of beam-columns. Plaut
[7] studied the buckling of columns with lateral bracing at arbitrary
point. He suggested an equation to predict bracing stiffness require-
ment. This work was continued by Plaut and Yang [8] for columns with
three equal or unequal spans. Gosowski [9] investigated the buckling
behavior of mono-symmetric beam-columns with bracings using dif-
ferential equations and experimental studies. His analytical solution is
suitable for beam-columns with arbitrary boundary and loading con-
ditions. The effects of the strength and stiffness of the beam bracing
have been studied by Yura [10]. He confirmed that the lateral bracing is
most efficient than the torsional bracing to conditions such as top flange

loading. Goncalves and Comotim [11] studied the beam-column inter-
action formula for various loading and boundary conditions, using fi-
nite element method. Their paper presents an accurate solution for
calculating equivalent moment factor, Cm. McCann et al. [12] studied
the stability of discretely braced beams using Rayleigh-Ritz analysis.
They investigated sequential critical mode progression using harmonic
representation.

In this paper the buckling behavior of the mono-symmetric beam-
columns with discrete lateral bracings is investigated and the bracing
stiffness requirement is presented. The beam-columns are simply sup-
ported and subjected to the pure bending moment and constant axial
load. 1D finite element method (FEM) is developed to calculate the
buckling load-set of mono-symmetric beam-columns. This finite ele-
ment (FE) formulation includes the effects of the elastic bracing stiff-
ness and initial geometric imperfection. Using MATLAB [13], a com-
puter program has been written which it can calculate the buckling
load-set of unrestrained, restrained and imperfect beam-columns. The
proposed FEM program is verified with the results of previous experi-
mental and analytical studies and also the 3D FE analyses. 3D FE
analyses are done using Abaqus [14] software. Subsequently, the closed
form solution of the bracing stiffness requirement is proposed, using the
matrix form of the energy equation and the interaction P-M curve is
presented. Also a nonlinear summation of the utilization ratios of the

https://doi.org/10.1016/j.istruc.2018.03.006
Received 21 September 2017; Received in revised form 15 December 2017; Accepted 17 March 2018

⁎ Corresponding author.
E-mail address: elham_pn@yahoo.com (E. Mohammadi).

Structures 14 (2018) 164–177

Available online 20 March 2018
2352-0124/ © 2018 Institution of Structural Engineers. Published by Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/23520124
https://www.elsevier.com/locate/structures
https://doi.org/10.1016/j.istruc.2018.03.006
https://doi.org/10.1016/j.istruc.2018.03.006
mailto:elham_pn@yahoo.com
https://doi.org/10.1016/j.istruc.2018.03.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.istruc.2018.03.006&domain=pdf


stresses is proposed as a design criteria. Finally, a parametric study is
done to investigate the effects of the eccentricity and degree of mono-
symmetry on the buckling strength and bracing stiffness requirement.

Nomenclature

A Cross-sectional area
E Young's modulus
G Shear modulus
[G] Geometric or stability matrix
It Torsional constant
Iw Warping constant
Ix Moment of inertia about the strong axis
Iy Moment of inertia about the weak axis
Iy,top, Iy,bot Top and Bottom flange moments of inertia
Icf Compression flange moment of inertia
[K] Out-of-plane stiffness matrix
K Beam parameter
L Length of the beam-column
M Applied bending moment
Me Pure bending buckling capacity
Mn Full braced bending capacity
P Applied axial load
Pe Pure axial buckling capacity
Pn Full braced axial capacity
[R] Restraints matrix
U Strain energy
V Potential energy of applied loads
d′ Distance between flange centroids
e =M/P eccentricity
n Number of bracing points
m Number of buckling mode
rd2 =(Ix+ Iy)/A, Polar radius of gyration
rm2 =rd2+ y02

u,v, w and φ Buckling deformations
x,y and z Principal centroid axes
y0 Coordinate of the shear center
yR Vertical distance between the bracing point and shear center
αL Lateral bracing stiffness
αLT Lateral bracing stiffness requirement
βx Mono-symmetric property
δ Deformations vector
μ Eigenvalue
ρ Degree of mono-symmetry
[Φ] Shape function matrix
ψ Amplitude of initial geometric imperfection

2. Buckling properties of mono-symmetric I-sections

For mono-symmetric I-sections, since the moment of inertias of
flanges are not equal, the points of centroid and shear center do not
coincide and distance between them can be calculated by degree of
mono-symmetry ρ, as given by

=
+

≈ρ
I

I I
I
I

cf

ytop ybot

cf

y (1)

According to Eq. (1), when the compression flange is larger than the
tension flange, ρ is larger than 0.5, when the compression flange is
smaller than the tension flange, ρ is smaller than 0.5, and for doubly
symmetric I-sections, ρ equals to 0.5 (see Fig. 1).

When a doubly-symmetric I-section is under the pure compression
load, the first buckling mode is lateral buckling and this element only
deflects out-of-plane. For mono-symmetric I-sections, in same loading
condition, out-of-plane deflection and twisting occur simultaneously
and the first buckling mode is the lateral-torsional buckling. This

different behavior is caused by an additional torque that known as
Wagner effect [15]. In mono-symmetric columns, this additional torque
reduces the torsional resistance of section from GItφ to (GIt – Pr0)φ,
[16]. Also, the torsional resistance of mono-symmetric beams changes
from GItφ to (GIt –Mβx)φ, [17]. Kitipornchai and Trahair [18] pro-
posed a simplified equation for mono-symmetry property βx as
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3. Lateral-torsional buckling analyses

3.1. General analytical equations of buckling strength of mono-symmetric
sections

An axially loaded column with doubly-symmetric cross-section may
buckle laterally or torsionally, depending on the bending and torsion
resistances. Therefore, the critical buckling load of doubly-symmetric
column is equal to the lowest of flexural and torsional buckling loads
[19], as given by
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Due to the imbalance of mono-symmetric I-sections, these are
buckled into the lateral or lateral-torsional buckling mode. Therefore,
the critical buckling load (also known as pure axial buckling capacity)
of mono-symmetric columns is equal to the lateral-torsional buckling
load, as stated in [19], as follows:
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The lateral-torsional buckling moment (also known as pure bending
buckling capacity) of the mono-symmetric I-beams can be calculated by
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3.2. Energy equation

For an ideal structure, when the total potential energy, for any small
displacement, remains constant, the equilibrium position of structure is
neutral [20]. The total potential energy is obtained by summing the
strain energy and the potential energy of the loads. In this paper, the
bifurcation buckling load of beam-columns is derived based on the
energy approach.

As shown in Fig. 2, the longitudinal axis is designated by z and the
strong and weak axes of section are designated by x and y, respectively.
The corresponding deformations to the x, y and z axes are considered as u,
v and w, respectively. Also, the out-of-plane rotation is designated by φ.

Fig. 1. Dimensional notations and degree of mono-symmetry.
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