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The current work provides a framework for the assessment of the mechanical response bounds of multilayer
helical assemblies. To that extent, the effect of structural kinematic constraints is analyzed, considering a wide
range of braiding patterns for the helical assembly. Thereupon, torsional response bounds are retrieved, introducing
scaling factors that relate the stiffness properties of the kinematically constrained structure to analytical, closed-form
expressions.
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1. Introduction

Helical structures are encountered in various forms of layered
assemblies, such as ropes, cables [1] and electricity power transfer
conductors [2]. Their structural response has been characterized with
the use of both analytical and numerical models.

On the analytical modeling side, the helix axial and torsional loading
response has been assessed by means of closed-form expressions,
primarily derived upon thin beam theory considerations. In particular,
Hruska provided analytical stiffness expressions that were solely
based on the axial stiffness of the helix cross section [3]. McConnell
et al. emphasized on the role of the helix cross-section torsional stiffness
[4], while closed-form expressions incorporating contributions of the
axial, torsional and bending helix cross-section stiffness (EA, GJ and EI
respectively) were provided by Sathikh et al. [5]. On the basis of the
above contributing response mechanisms, a modeling advancement
was presented, accounting for the radial loading structural response
apart from the commonly considered axial and torsional ones [6]. Finally,
experimental data on the static axial and torsional loading response
ware provided for single and three layer helical assemblies [7,8].

On the numerical modeling side, Jiang et al. [9] elaborated a
volume model based on the helical assembly structural symmetry,
while a homogenization, beam element based model, applicable for
beams with periodic micro-structures was presented by Cartraud
et al. [10]. Limitations on the applicability of closed-form expressions
were pointed out with the use of three dimensional finite element
modeling [11]. Moreover, the effect of different inter-wire motions on

the mechanical response of single layer helical assemblies was analyzed,
concluding that it is the utter pivoting suppression that can have a
substantial influence on the structural response and in particular on the
torsional stiffness [12].

The mechanical behavior of multilayer helical assemblies was
characterized by closed-form expressions formulated upon the response
of the assemblies’ single helical constituents [13]. Furthermore, the
mechanical behavior of locked-coil geometries was addressed by means
of analytically derived simplified routines. The latter were used to
quantify the effect of the cross-section shape and size on the stiffness
coefficients, concluding that any influence is rather minor for all
practical applications [14]. Moreover, numerical models for the
simulation of two layer [15] and three layer helical assemblies were
presented [16] based on three dimensional finite element modeling.

Assessing the stiffness bounds of a helical assembly allows for the
computation of the construction's loading bounds. The latter constitutes
the basis for the analysis of its long term behavior. To that extent, Alani
et al. studied the effect ofmean axial loading on the endurance of helical
strands [17], while the stress state that axial and bending loads induced
was correlated to the fatigue life of ropes [18]. Furthermore, fretting
damage phenomena were related to the axial and bending loading
bounds to which the helical assembly was subject [19]. Finally, experi-
mental studies highlighted the role of torsional loading as a failure
mechanism of spiral ropes [20].

The weaving pattern of helical assemblies results in a discrete
supporting of all helical layers, except for the innermost, as Fig. 1
schematically illustrates. Axially loading or externally anchoring
the construction entails that the support positions – named as trellis
points – are subject to compressive loads. The latter are either self-induced
due to the radial forces that axial loading creates, or externally applied
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(at the anchoring positions). As a result, the trellis points are contact
boundaries that cannot be generally considered as load free, a conclusion
experimentally verified upon post-failure inspection [21].

In the sections to follow, the torsional response of helical bodies
positioned in multilayer helical assemblies is analyzed. More specifically,
torsional stiffness bounds are derived considering the application of
kinematic constraints at discrete positions along the helix development
(Section 2). In particular, the effect of kinematic constraints applied at
the helix cross-section normal rotational degree of freedom is assessed
for different helical assembly structural arrangements. To that extent,
scaling factors are introduced, quantifying the constraint effect with
respect to analytical, closed-formed expressions (Section 3). A discussion
on the obtained values along with concluding remarks follows in
Section 4.

2. Model development

2.1. Helix geometry

The position vector R(s) of the helical body is defined as:

R sð Þ ¼
Rx

Ry

Rz
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where a and b are intrinsic helix parameters. In particular, a stands for
the distance at which the centerline position of the helix lies with re-
spect to the origin and b for the along the helix central axis per unit an-
gular evolution φ. Thereupon, the helix curvature κ and tortuosity τ are
defined:

κ ¼ a
γ2 τ ¼ b
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
: 2

Fig. 2 depicts the afore-introduced geometric parameters alongwith the
Frenet-Serret frame n, b, t, defined by means of the helix geometric pa-
rameters of Eqs. 1 and 2 as follows:
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2.2. Helix closed-form structural response

The helix linear structural response upon an applied axial and
torsional strain is described by a 2 × 2 stiffness matrix, relating the ap-
plied strains to a force andmoment resultant along the Cartesian central
axis Z:

Fz
Mz

� �
¼ κϵzϵz κϵzω0

κω0ϵz κω0ω0

� �
ϵz
ω0

� �
: 4

Analytical models have provided closed-form expressions for the
structural response as a function of different contributing mechanisms,
namely of the axial EA, torsional GJ and bending EI helix cross-section
stiffness (Section 1). Thereupon, the helix torsional stiffness κω0ω0 has
been analytically retrieved as [5]:

κω0ω0 ¼ EAa2c2sþ GJs7 þ EIsc2 1þ s2
� �2

κω0ω0 θ→90�ð Þ ¼ GJ 5

where the abbreviations s = sinθ and c = cosθ have been employed. In
the above expression E and G stand for the Young's modulus and for the
shear modulus respectively, while A for the cross-sectional area and I
and J for the helix cross-section central moments of inertia.

Eq. (5) predicts the torsional stiffness of a centrally torqued rod GJ
for the geometric margin of a helix with a steep angle approaching
θ→90�. The result reflects the equilibrium equations and themechanical
considerations uponwhich the stiffness expression has been derived. In
particular, the internal forces and moments developed, solely follow
the tangential (Ft, Mt) and binormal local vectors (Fb, Mb) as Fig. 2
illustrates, while no force or moment arises around the normal vector
n of the helix cross-section.

2.3. Helix kinematic constraints

By applying a kinematic constraint on the normal rotational degree
of freedom of the helix cross-section, a local moment Mn develops, as
Fig. 3 schematically illustrates.
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Fig. 1.Multilayer helical assembly support pattern.

Fig. 2. Helix geometry.
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