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a  b  s  t  r  a  c  t

The  rapidly  growing  and  gigantic  body  of stored  data  in the  building  field,  coupled  with  the  need  for  data
analysis,  has  generated  an  urgent  need  for  powerful  tools  that  can  extract  hidden  but  useful  knowledge
of  building  performance  improvement  from  large  data  sets.  As  an emerging  subfield  of computer  science,
data mining  technologies  suit this  need  well and  have  been  proposed  for  relevant  knowledge  discovery
in  the  past  several  years.  Aimed  to highlight  recent  advances,  this  paper  provides  an  overview  of  the
studies  undertaking  the two  main  data  mining  tasks  (i.e.  predictive  tasks  and  descriptive  tasks)  in  the
building  field.  Based  on  the overview,  major  challenges  and  future  research  trends  are  also  discussed.
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1. Introduction

Currently the importance of improving building energy per-
formance for saving energy and enhancing building sustainability
has been widely recognized. One effective way of achieving this
objective is to uncover and extract useful knowledge from build-
ing operational data (e.g. temperature, flow rate, power and
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equipment states) that contains abundant valuable information
on actual building performance. The widespread use of building
automation systems (BASs) enables a tremendous amount of build-
ing operational data to be stored in building databases that also
continue to expand. This rapidly growing and gigantic body of
stored data, coupled with the need for data analysis, has gener-
ated an urgent need for powerful tools that can extract hidden but
useful knowledge from large building databases.

As an emerging and promising technology, data mining (DM)
is a powerful and versatile tool to automatically extract the valu-
able knowledge embedded in huge amounts of data. It can be
defined in many different ways. As defined by Cabena, Hadjinian,

http://dx.doi.org/10.1016/j.scs.2015.12.001
2210-6707/© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.
0/).

dx.doi.org/10.1016/j.scs.2015.12.001
dx.doi.org/10.1016/j.scs.2015.12.001
http://www.sciencedirect.com/science/journal/22106707
http://www.elsevier.com/locate/scs
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:haghi@bcee.concordia.ca
dx.doi.org/10.1016/j.scs.2015.12.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Please cite this article in press as: Yu, Z., et al. Advances and challenges in building engineering and data mining applications for
energy-efficient communities. Sustainable Cities and Society (2015), http://dx.doi.org/10.1016/j.scs.2015.12.001

ARTICLE IN PRESSG Model
SCS-348; No. of Pages 6

2  Z. Yu et al. / Sustainable Cities and Society xxx (2015) xxx–xxx

Stadler, Verhees, and Zanasi (1998), DM is “an interdisciplinary
field bringing together techniques from machine learning, pattern
recognition, statistics, databases, and visualization to address the
issue of information extraction from large databases.” In the past
several decades, researchers have been vigorously and successfully
applying DM in many scientific, medical, and application domains
such as banking, bioinformatics and new materials identification.
Recently it has also been introduced into the building field that is a
well-fit application area for DM,  since it generates and collects vast
amounts of data on system operation, occupant behavior, power
consumption, climatic conditions and etc.

In general, DM includes six categories of widely accepted and
implemented techniques (Usama, Gregory, & Smyth, 1996):

• Data classification (e.g. the decision tree method, support vector
machine (SVM) and artificial neural network (ANN)),

• Clustering analysis,
• Association Rule Mining (ARM),
• Regression,
• Summarization, and
• Anomaly Detection.

Readers may  refer to (Jia, Kamber, & Pei, 2012) for detailed
information of these techniques. These techniques can be broadly
categorized into predictive tasks and descriptive tasks (Jia et al.,
2012). This paper reports an overview of the recent studies under-
taking the two tasks in the building field.

2. DM applications in the building field

2.1. Predictive tasks

2.1.1. Building energy demand prediction
The prediction of building energy demand plays an important

role in improving building performance. An accurate prediction
needs to take various significant influencing factors of building
energy demand into consideration, such as weather conditions,
HVAC equipment, building envelopes and occupant behavior. The
complexity and uncertainty of these factors further adds difficul-
ties to improve prediction accuracy. DM techniques may  make a
breakthrough in dealing with this complexity and uncertainty.

Zhao and Magoulès (2012) indicated that DM techniques are
very applicable to building energy demand prediction since they
can deal with non-linear problems. ANN and SVM are the two
most widely used DM techniques for this application (Ahmad
et al., 2014). Kumar, Aggarwal, and Sharma (2013) applied vari-
ous ANN methods, including back propagation, recurrent ANN, auto
associative ANN and general regression ANN. The adopted ANN
architecture significantly influences the coefficient of variation that
ranges from 2% to 40%. They concluded that ANN is more suitable
for the prediction of a large set of parameters than any statistical
techniques. Li, Ren, and Meng (2010) reported that in many cases
SVM shows higher prediction accuracy than ANN. However, train-
ing SVM can be a very slow process due to large volume of training
data. The usage of parallel SVM (Zhao & Magoulès, 2011) might be
a feasible alternative.

Both ANN and SVM models operate like a “black box”, mean-
ing that the model can provide a prediction but cannot provide a
justification for supporting the prediction. In order to overcome
this limitation, Yu, Haghighat, Fung, and Yoshino (2010) developed
a building energy demand predictive model based on the deci-
sion tree method. Its competitive advantage lies in the ability to
generate accurate predictive models (92% accuracy in their study)
with interpretable flowchart-like tree structures that enable users
to quickly extract useful information. However, the decision tree

method is basically developed for predicting categorical variables
other than for predicting numerical variables.

Considering that different DM techniques have their own spe-
cialties, strengths and weaknesses, it is not easy to find the best
candidate for the building energy demand prediction. The recent
research trend is towards the integration of different DM tech-
niques for more accurate prediction. For example, Chou and Bui
(2014) developed an ensemble model by combining ANN and
SVM to predict cooling and heating demand. In order to predict
the next-day energy consumption and peak power demand, Fan,
Xiao, and Wang (2014) developed ensemble models by combining
eight base DM models and assigning each DM modal an optimized
weight based on genetic algorithm (GA). The results show that the
ensemble models achieve higher prediction accuracy than those of
individual base models.

2.1.2. Building occupancy and occupant behavior
Building occupancy and occupant behavior are recognized as

crucial factors influencing the discrepancy between practical and
simulated building energy consumption. However, it is difficult to
investigate them analytically and then to develop reliable predic-
tion models due to their complicated characteristics and stochastic
nature (Yu, Haghighat, Fung, Morofsky, & Yoshino, 2011a). To meet
this challenge, different stochastic models (e.g. using probabilistic
methods (Sun, Yan, Hong, & Guo, 2014; Stoppel & Leite, 2014) and
the Markov Chain method (Muratori, Roberts, Sioshansi, Marano, &
Rizzoni, 2013)) have been proposed. However, the proposed mod-
els are severely restrained by the limitation: The modeling process
tends to be complex and advanced mathematical knowledge is
required.

In order to remove the above limitation, researchers have
attempted to establish DM-based models. For example, Basu,
Hawarah, Arghira, Joumaa, & Ploix, 2013) developed a decision-
tree based model for predicting occupant behavior at the appliance
level in residential buildings. D’Oca and Hong (2015) proposed a
DM methodology to model office occupancy patterns and work-
ing user profiles based on big data streams. They found that the
decision tree method is suitable for predicting the occupancy pres-
ence, supported by Zhao, Lasternas, Lam, Yun, and Loftness (2014),
who built the occupant behavior prediction models based on appli-
ance power consumption data in a medium-size office building. The
results of both studies indicate that the modeling accuracy is very
satisfactory. However, the developed decision-tree based models
are static models that are hard to simulate the dynamic nature of
building occupancy and occupant behavior.

The main focus of future research should be placed on testing
and comparing other dynamic DM-based models and integrating
them into building energy modeling programs like TRNSYS and
Energy Plus. In addition, more research needs to be conducted so
that architects and designers will benefit from bridging the gap
between actual and predicted building energy performance.

2.1.3. Fault detection diagnostics (FDD) for building systems
Automating the process of detecting equipment and system

malfunctions and making a proper diagnosis can help to ensure
stable or optimal building operation. In terms of the approach to
formulating the diagnostics, FDD methods can be categorized as
model-based methods, which are based on prior knowledge of
underlying system physics, and data-driven methods, which are
based on historical data (Katipamula & Brambley, 2005).

The requirement of prior knowledge, together with complex
modeling processes and heavy computational burden, imposes
severe constraints on the application of the model-based meth-
ods. Comparatively, the data driven methods are much easier to use
since the models are normally automatically generated. Various DM
techniques have been employed as data driven methods for FDD.
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