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A B S T R A C T

In recent years, artificial neural networks were included in the prediction of deformations of structural elements,
such as pipes or tensile specimens. Following this method, classical mechanical calculations were replaced by a
set of matrix multiplications by means of artificial intelligence. This was also continued in finite element ap-
proaches, wherein constitutive equations were substituted by an artificial neural network (ANN). However, little
is known about predicting complex non-linear structural deformations with artificial intelligence. The aim of the
present study is to make ANN accessible to complicated structural deformations. Here, shock-wave loaded plates
are chosen, which lead to a boundary value problem taking geometrical and physical non-linearities into ac-
count. A wide range of strain-rates and highly dynamic deformations are covered in this type of deformation.
One ANN is proposed for the entire structural model and another ANN is developed for replacing viscoplastic
constitutive equations, integrated into a finite element code, leading to an intelligent finite element. All cal-
culated results are verified by experiments with a shock tube and short-time measurement techniques.

1. Introduction

Artificial neural networks have been applied in engineering pro-
blems as an alternative approach compared to classical methods based
on continuum mechanical modelling. Promising results were achieved
by investigating stress-strain curves of metal specimens under high-
temperature [1], design of steel structures [2], vibrations of structures
[3,4], or stability problems of structures [5]. Reliability studies of
structures were reported in [6] and influences of welding on material
properties are investigated in [7]. An ANN can lead to much lower
computational time and can replace the mechanical model completely.
It can be trained by experimental data, only, and needs therefore no
identification of material parameters. Consequently, a mathematical
model is generated by means of an algebraic system of equations. Fol-
lowing this approach, the ANN approximates to the trained data. The
learning procedure of the ANN is based on the examples, which are
provided by the user [8]. However, weaknesses of ANNs have been
reported in [9] due to the difficulties of interpreting parameters in
neural networks, e.g. the number of hidden layers or neurons. Also the
components of the synapse matrices of a trained ANN can hardly be
interpreted as it can be done with material parameters in a constitutive
law. In several studies, the problem of a so-called black box is described
[10,11]. Consequently, it is difficult to find reasons to explain dis-
correlations between predictions using ANN and experimental data.

Once, the ANN has been trained well with input and output data sets, it
can recalculate the provided data very accurately. However, predictions
beyond that data can lead to uncertain results, which is documented in
literature [12]. An additional approach using the advantages of ANN
together with well-established numerical methods is the development
of intelligent finite elements. These elements have been proposed in
literature, leading to a combination of classical finite elements with an
ANN and are used only for a part of the entire mechanical model.
Studies substituting the constitutive model by means of an ANN have
been published in [13]. A beam element, based on a neural network, is
proposed in [14] and leads to lower computational costs than a classical
approach. This benefit is even more pronounced since multiscale ap-
proaches are concerned [15]. In literature several neural network
constitutive models (NNCM) were discussed [16]. However, it was re-
ported that the choice of the provided training data is essential for a
reliable intelligent finite element [17].

The substitution of nonlinear structural and material models for
two-dimensional structures by ANNs is, to the knowledge of the au-
thors, not yet well known in literature. Structures, such as plates and
shells, are widely used in engineering, can be subjected to dynamic
loadings and can undergo geometrically non-linear deformations with
inelastic strains. Especially, the correct modelling of strain-rate de-
pendency of structural deformations is subject of current research
[18–20]. In the present study, metal plates are loaded impulsively by
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shock waves causing viscoplastic deformations and high inelastic strain
rates. The aim is to propose an ANN, which is able to predict these
highly non-linear structural deformations. The ANN is developed in two
ways. Firstly, a neural network is proposed, trained by experimental
data only and, afterwards, it is used to predict structural deformations
in additional experiments. Secondly, in order to overcome discorrela-
tions between measurements and calculations, an intelligent finite
element is proposed, wherein the constitutive equations are replaced by
an ANN. This neural network is trained with data about stresses, strains,
strainrates and hardening in a range, which is expected in the finite
element simulations. Following this strategy, we exploit the advantage
of ANNs to be very accurate since only trained data is used. The in-
telligent finite element is implemented in a code for a geometrically
non-linear first-order shear deformation shell theory. In this way, a
classical shell theory is combined with an ANN substituting a physically
nonlinear constitutive law and leading to low simulation times. By
means of the proposed method, ANNs shall be accessible to nonlinear
structural problems in engineering.

2. Experiment

The measured results of structural deformations are obtained by
experiments in a shock tube, see [21]. In Fig. 1, the used set-up of the
shock tube is shown, consisting of a high (HPC) and a low pressure
chamber (LPC), separated from each other by an aluminum membrane.
After an increase of the gas pressure in the HPC, the membrane is de-
stroyed, causing a shock wave, which propagates the shock tube to-
wards the aluminum plate specimen in the LPC. If the shock wave hits
the plate, then a high-pressure and high-density impulse is caused on
the specimen leading to viscoplastic deformations in time scales of
several microseconds.

The mid-point displacement of the circular specimen and the pres-
sure acting on the plate during the time are measured by means of
short-time measurement techniques. The experiments are carried out
with different thicknesses of membranes between the HPC and LPC and
with different gases in the HPC, such as nitrogen and helium. In this
way, different pressure peaks (pp) and pressure evolutions can be
caused on the specimen. The plate specimens are 2mm thick and ex-
hibit a diameter of 553mm. In Fig. 2, four experiments with mid-point
displacements (Dis.) of the plates and pressures (Pre.) acting on them
are presented. Three of them will be used to train the ANN and the
fourth one is taken as a reference for the validation of the ANN. The
measurements can be recorded down to 1 μs sample rate in order to
assure that enough experimental data is available to train the ANN. The
capacitive displacement sensor, developed in [21] and the piezoelectric
pressure sensors exhibit an inertia small enough to record fast signal
changes.

3. Artificial neural network for the entire structure

The ANN developed in this study is based on a feed forward net-
work, which is well established in literature [22]. The present

algorithm consists of three layers and is implemented in python. The
input layer includes three neurons, representing time, pressure, and
shock wave propagation velocity. The hidden layer is composed of eight
neurons and the output layer has one neuron denoting the mid-point
displacement of the plate specimen. In incremental approaches, as in
the finite element method, increments of state variables, e.g. strains and
displacements, are accumulated during the simulation. However, in the
present study, the ANN uses ordered pairs of values with the mentioned
input and output values, i.e. one pressure, one mid-point displacement,
and one propagation velocity can exist only at one instance of time. If
we ignored one of these neurons, then ambiguous solutions would be
possible. For this reason, the time is treated as a state variable in the
ANN as e.g. the mid-point displacement.

In Fig. 3, the architecture of the ANN is shown. In order to optimize
the least square error between calculated output and provided output
data, a gradient descent algorithm in form of the back propagation
method is applied. All values used in the ANN are normalised due to
better convergence [1,23]. In [24], it was described that it is necessary
to obtain numerical stability with homogeneous values. Here, this is
carried out for input and output values xi by
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leading to unified values Xi and with xmin and xmax as minimum and
maximum values of each input and output value, respectively. The
propagation function includes the weights wij, which exhibit random
values initially. They represent the weights of the connections between

Fig. 1. Principle of the shock tube.
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Fig. 2. Plate deflections under high speed pressure loadings with peak pressures
(pp) at the specimen and helium and nitrogen in the HPC.

Fig. 3. Artificial neural network for the entire structure.
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