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A B S T R A C T

A Pseudo Curved Beam (PCB) model is proposed to analyze the buckling behaviors of inflated arch. The
wrinkling (local buckling) effect is considered in the PCB model by modifying the cross-sectional area and
sectional moment of inertia in the stiffness matrix. The wrinkling angle, wrinkling and failure load are then
predicted based on the proposed PCB model. The bending experiment and numerical simulation of a quarter-
circle inflated arch are performed to verify the validation of the PCB model. The effects of load conditions,
constraint conditions, structural geometric parameters, inflation pressure and material properties on the buck-
ling characteristics of inflated arch are parametrically studied in the end. The method and results provide good
references for the load-carrying design of inflated structures.

1. Introduction

Inflatable membrane structures, due to their ease of portability, low
packed volume, and light weight, have been used as main load-carrying
members in civilian structures and aeronautical structures [1–4]. The
inflated membrane can carry compressive stress produced by external
loads and will restore its initial shape after being overloaded, because
generally the load-induced membrane stresses are well below the
membrane strength [5–7].

However, the complex wrinkling effect, which plays a crucial role in
deformation process, makes the theoretical predictions on buckling
characteristics of inflated structures extremely difficult. The statics
behaviors (e.g. load-deflection behavior, buckling behavior) [5–13], the
dynamic deployment performance [13], vibration characteristics
[14–16] of inflated torus, arch and air-inflated frame were analyzed
mainly based on experiments and numerical simulations. The theore-
tical works have been carried out to illuminate the mechanical beha-
viors of the inflated membranes, such as the global buckling, local
wrinkling behavior [17,18] and the cross-sectional ovalization (also
named as “Brazier effect”) [19–21]. Comer and Levy [22] modeled the
bending behavior of an inflated beam based on the Euler-Bernoulli's
kinematics. Fichter [23] derived nonlinear equilibrium equations of
inflated beam under bending based on the Timoshenko's kinematics and
the principle of minimum potential energy. George [13] analyzed the
in-plane and out-of-plane buckling characteristics of inflated ring based

on the virtual work principle. The ovalisation and bifurcation in-
stabilities of cylinders in pure flexure were studied by Wadee et al.
[19,20] using a hoop second-degree trigonometric series solution. Le
van and Wielgosz [24] improved Fichter's theory [23] to consider the
interactive bending and buckling behaviors of inflatable beams by es-
tablishing the virtual work principle in three-dimensional Lagrangian
form. David's et al.[25,26]developed a Timoshenko beam element
based on the virtual work principle, which includes pressure effects,
wrinkling, and geometric nonlinearities, to analyze the bending beha-
vior of pressurized fabric beams. Then they developed the quadratic
Timoshenko beam element to consider the material and geometrical
nonlinearity of inflated arch, and a semicircular inflated fabric arch
were tested to verify the beam-element models [5]. Brayley et al.[10]
developed a beam finite-element model, which incorporates the braid
angle and strap stiffness, to study the bending behaviors of the inflated,
braided, strapped beams and arches. Wang et al. [27]proposed a
Pseudo-beam method based upon Fichter's theory and the virtual work
principle with a 3-node Timoshenko's beam model. The concept of the
wrinkling factor was then proposed to predict the critical wrinkling
load and initial wrinkling location of inflated beam under bending [28].

In general, the application of shell element in wrinkling analysis
results in time consuming and convergence difficulty. Neither Euler nor
Timoshenko beam is capable of explaining the bending-twisting and/or
extension-twisting couplings which truly exists in the deformation
process of curved beam [29–33]. Thus, it is necessary to use the curved
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beam model to perform the buckling and wrinkling analysis of curved
inflated beam. Based on this consideration, a Pseudo Curved Beam
(PCB) model is proposed to analyze efficiently the wrinkling and
buckling characteristics of the inflated arches in this paper. The paper is
structured as follows. In Section 2, the Pseudo Curved Beam model is
derived at first. The wrinkling effect is also considered in the PCB model
by modifying the cross-sectional area and sectional moment of inertia
in the stiffness matrix. In Section 3, the mechanical characteristics of a
quarter circle inflated arch under bending are experimental tested and
numerically simulated. In Section 4, the results obtained from experi-
ments and simulations are used to verify the validation of proposed PCB
model. In Section 5, the effects of load conditions, constraint condi-
tions, structural geometrical parameters, inflation pressure and mate-
rial parameters on structural buckling load of inflated arch are studied
to provide references to design the load-carrying capacity of inflated
structures. The conclusions are drawn in the end.

2. Pseudo Curved Beam model

2.1. Curved beam model

The arch-type structure is a typical naturally curved structure. A
large number of straight beam (Bernoulli-Euler Beam or Timoshenko
beam) elements are generally used to model the curved or twisted
structures. The accurate results can be obtained when the number of
straight beam elements is large enough, which will make the compu-
tation time-consuming [30]. On the other hand, the straight beam
element itself, however, is incapable of illuminating adequately the
mechanical characteristics of the curved structure, such as arch, due to
the bending-twisting and/or extension-twisting couplings existing in
curved structure deformation process. In this section, we deduce the
geometric equation of a curved beam and establish the curved-beam
element model.

2.1.1. Geometric configuration
The geometric configuration of space arbitrary curved beam is

shown in Fig. 1. An arbitrary point P0 is set on the center axis of curved
beam. The parameter s represents arc length from the curved origin to
point P0 along the center axis.rP0 is the position vector of the point P0 in
a three-dimensional global coordinate system x y z, , .

The central axis tangent vector and the curvature are defined as
[31,32]

λ s κ s( ) ( ) λd
ds

d
ds

rP0= = (1)

Two mutually orthogonal unit vectors sn( ) (main normal vector)
and sb( ) (binormal vector) define the cross-sectional plane of curved
beam. Therefore s s st n b( ), ( ), ( ) constitute the Frenet-Serret frame, and
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The torsion at P0 is defined as

τ s d s
ds
b( ) ( )= (3)

A spindle coordinate system e e e, ,s y z are introduced to facilitate the
derivation of Green Strain tensor in next section. The spindle coordinate
system has its origin on the axis of beam, and its unit vector es is in the
tangent direction of beam. The parameter χ represents the angle be-
tween the spindle coordinate system and the Frenet-Serret frame
(Fig. 1). The relation between these two coordinate systems is given by

χ χ
χ χ

e
e
e

t
n
b

1 0 0
0 cos sin
0 sin cos

s
y

z

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢
⎢ −

⎤

⎦
⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥

(4)

then differentiation of Eq. (4) based on Frenet-Serret formulas yields
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Where

Nomenclature

s curvilinear coordinate
rP0 position vector of the point P0
x y z, , rectangular Cartesian coordinates
λ tangent vector
κ curvature

s s st n b( ), ( ), ( ) Frenet-Serret frame
e e e, ,s y z cross-section curvilinear spindle coordinates
χ angle between the spindle coordinate system and the

Frenet-Serret frame
e e e, ˆ , * cross-section spindle coordinate system at the initial con-

figuration, deformed configuration and deformation con-
figuration based on Kirchhoff Hypothesis

θ θ θ, ,1 2 3 rotations of e in the directions of e e,s y and ez respectively
γ γ,2 3− − rotations of e* in the directions of e e,s y respectively

x x x, ,1 2 3 local Cartesian coordinates
i i i, ,1 2 3 unit vectors of local Cartesian coordinates x x x, ,1 2 3

R radius of inflated torus

r radius of cross-section of inflated torus
t membrane wall thickness
p inflation pressure
E Young modulus
v Poisson ratio
σ σ σ, ,r θ z radial stress, circumferential stress and axial stress
A cross-sectional area of inflated curved beam
I area moment of inertia of inflated curved beam
J area polar moment of inertia of inflated curved beam
σ σ,m 0 maximum stress and minimum stress in axial direction
σcr critical wrinkling stress of membrane
θw wrinkling angle

Subscripts:

ϕ initial state
0 current state

Fig. 1. Space arbitrary curved beam.
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