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A B S T R A C T

Accurate thermal buckling analysis of functionally graded orthotropic cylindrical shells is presented based on the
Reissner's shell theory under the symplectic framework. By introducing a full-state vector, the high-order gov-
erning differential equation is reduced into a set of low-order ordinary differential equations. The fundamental
unknowns are expanded in terms of the symplectic eigensolutions without any trial function. The buckling
equations and buckling mode shapes are analytically obtained. The present study demonstrates that the ex-
pressions of displacements have different forms and strongly depend on the end conditions and thickness. Some
new results are presented in numerical examples.

1. Introduction

The applications of functionally graded materials (FGMs) have at-
tracted much attention in recent years especially in extreme high
temperature environments. Typically, the FGMs are made of a mixture
of ceramic and metal. The ceramic component provides high tem-
perature resistance while the ductile metal component prevents frac-
ture. Nowadays, due to the excellent carrying capacity of the shell-like
structure, functionally graded (FG) cylindrical shells are increasingly
being used in the development of high-speed spacecrafts, nuclear fusion
reactors, thermo-generators, etc [1,2]. Therefore, the thermal stability
of such shells under high temperature conditions is very essential.

Thermal buckling of cylindrical shells has been well established in
the field of structural stability [3–6]. The literature available on the
elastic cylindrical shell is much more extensive than for the FG cy-
lindrical shells. In the study of thermal buckling of FG cylindrical shells,
Shahsiah and Eslami [7,8], Wu et al. [9], Yaghoobi et al. [10] and
Bagherizadeh et al. [11] obtained the closed-form solutions for thermal
buckling of FG cylindrical shells. Sheng and Wang [12] analyzed the
thermal buckling and dynamic stability of FG cylindrical shells under
thermal and mechanical loads. Shariyat [13] studied the dynamic
thermal buckling of FG cylindrical shells with sudden heat. Mirzavand
and his collaborators [14–16] found exact solutions for thermal buck-
ling of imperfect FG cylindrical shells. Shen [17–20] obtained exact
solutions for thermal buckling and postbuckling of FG cylindrical shells.
Kiani and his collaborators [21–25] derived exact solutions for thermal
buckling of FG cylindrical and conical shells. More recently, Sofiyev

et al. [26] and Duc et al. [27] studied thermal buckling of FG conical
shells.

In view of the aforementioned literature, the buckling of FG cy-
lindrical shells was reduced to a high-order governing partial differ-
ential equation in the classical system [9,15] which were solved by
some pre-determined functions; most of the works were accomplished
based on the simplified shell (e.g., Donnell's shell theory). The simpli-
fied assumptions and trial functions simplify the solution procedure but
only provide the approximate solution in most cases. An accurate cy-
lindrical shell model will provide more reasonable guidance to the
design of the thermal barrier structures. This paper aims to develop an
accurate thermal buckling model of FG orthotropic cylindrical shells
based on the Reissner's shell theory. Exact solutions for thermal buck-
ling of FG orthotropic cylindrical shells will be obtained by a Ha-
miltonian-based method [28–34].

The paper is organized in the following way. Firstly, the high-order
governing differential equation is reduced to a set of low-order ordinary
differential equations in the Hamiltonian system. Then, analytical
thermal buckling equations and buckling mode shape functions are
obtained. Finally, comparisons and numerical examples are provided.

2. Material properties of FG cylindrical shells

A FG orthotropic cylindrical shell subjected to a temperature rise
ΔT, with length L, radius R and thickness h is shown in Fig. 1. The
cylindrical shell is referred to a coordinate system (x, θ, z) in which x
and θ are in the axial and circumferential directions of the shell and z is
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in the direction of the outward normal to the middle surface. The FG
cylindrical shell is assumed to be made of two different material com-
ponents and the material properties vary continuously in the thickness
direction [7,15]. The effective material properties can be expressed as
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where P may be used to substitute Young's modulus E, Poisson's ratio υ
and thermal expansion coefficient α; the subscripts “o” and “i” denote
the outer and inner material components, respectively; N stands for the
power-law index; T is the ambient temperature (in Kelvin). Here, it
should be stated that the material properties of outer and inner surfaces
of the shell (Pko and Pki, k= x, θ) can be temperature dependent and the
dependency on temperature may be expressed in terms of the following
higher order Touloukian representation [35], i.e.,

= + + + +−
−P T P P T P T P T P T( ) ( 1 )kl 0 1

1
1 2

2
3

3 where k= x, θ, l = i, o
and P0, P-1, P1, P2 and P3 are the coefficients of temperature T.

3. Basic equations of FG cylindrical shells

On the basis of Reissner's shell theory [36], the displacements along
x-, θ - and z- axes are specified by u, v and w, respectively. The strain
vector = e e ee { , , }x θ xθ can be expressed as
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are the strain and curvature vectors at the shell middle surface, re-
spectively.

The temperature rise of the cylindrical shell in the ambient tem-
perature is assumed to be T(z)= ΔT. The constitutive relation with
thermal effects [37,38] is given by

= ⋅ −σ Q e σT (5)

where = σ σ σσ { , , }x θ xθ is the stress vector; = σ σσ { , , 0}T Tx Tθ is the
thermal stress vector, = +σ Q α T Q α TTx x θ11 12 , = +σ Q α T Q α TTθ x θ21 22 ;
Q is the stiffness matrix and its non-zero components are

= −Q E υ υ/(1 )x x θ11 , = −Q E υ υ/(1 )θ x θ22 , = −Q υ E υ υ/(1 )θ x x θ12 ,
= −Q υ E υ υ/(1 )x θ x θ21 , = +Q E υ/[2(1 )]θ x66 ; =υ E υ Ex θ θ x.
The resultant force vector = N N NN { , , }x θ xθ

T and moment vector
= M M MM { , , }x θ xθ

T of the cylindrical shell are given by
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Substituting Eqs. (2) and (5) into Eq. (6), the internal forces are
expressed in terms of mid-surface displacements, i.e.,
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where ∫= −A B D Q z z dz{ , , } {1, , }ij ij ij h
h

ij/2
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components of the extensional stiffness matrix A, coupling stiffness
matrix B and bending stiffness matrix D, =A A12 21, =B B12 21 and

=D D12 21; ∫= − dzφ σh
h

T/2
/2 and ∫= − zdzγ σh

h
T/2

/2 indicate the resultant
forces and moments caused by the temperature rise ΔT, respectively.

Consider pre-buckling axisymmetric deformations before buckling
occurs. The displacements and stress resultants are functions of x-co-
ordinate only. Hence, specifying the corresponding quantities with su-
perscript “0”, the bucking is mainly caused by an increase of internal
forces =N Nx T

0 0, =N 0θ
0 and =N 0xθ

0 [9,39] where
∫= + −−N E α υ E α υ υ Tdz[( )/(1 )]T h

h
x x θ x θ x θ

0
/2
/2 represents the internal

forces caused by the thermal loads. Here, the pre-buckling force is taken
as =N Nx T

0 0 because the surfaces of the FG cylindrical shell are free
[4,5,7–9,17,31,32]. Specifying the internal forces and displacements
with superscript “1” and retaining the linear terms [40], the governing

Nomenclature

E , υ, α Young's modulus, Poisson's ratio and thermal expansion
coefficient

L, h, R Axial length, thickness and middle radius
N Power-law exponent
H Hamiltonian operator matrix
ψ Total unknown vector
φ, γ Resultant forces and moments caused by a temperature

change

q, p Original vector and dual vector
μ, η Symplectic eigenvalue and Symplectic eigenfunction
θθ Angle of rotation
Aij, Bij, Dij Extensional, coupling and bending stiffnesses
LC Lagrangian density function
Qkl Reduced stiffness
T0 Initial temperature
ΔTcr Critical thermal buckling load
Vx , Vθ Equivalent shear forces

Fig. 1. Geometry of a FG orthotropic cylindrical shell with thermal load.
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