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A B S T R A C T

In the current study, 1D refined beam theories on the basis of Carrera Unified Formulation (CUF) are combined
with Isogeometric approach (IGA) for the static and free vibration analysis of thin-walled beam structures. The B-
spline basis functions utilized in IGA are employed to approximate displacement field due to their interesting
attributes in analysis. N-Order Taylor-like expansions are utilized in the framework of CUF which presents finite
element matrices in the form of fundamental nuclei that is independent of the type and order of expansion.
Higher-order B-spline basis functions attenuate the effect of shear locking properly and higher-order theories
presented by CUF are free from Poisson locking phenomenon and utilizations of shear correction factor. Several
numerical results including both solid and thin-walled structures are investigated and it is shown that coupling
IGA and CUF ends in a suitable methodology to analyze beam structures.

1. Introduction

Analysis of slender bodies is a major concern in the design of
aerospace, mechanical, and civil structures. In fact, beam structures are
widely used as aircraft wings, helicopter rotor blades in aerospace en-
gineering or as bridge decks in civil engineering industry. Hence, un-
derstanding the manner of beams under different conditions such as
bending and free vibration seems to be crucial.

Classical beam theories were first introduced by Euler-Bernoulli [1]
and then by Timoshenko [2,3]. Euler-Bernoulli theory assumes that the
cross section of the beam is infinitely rigid in its own plane due to
neglecting transverse strains. To overcome this limitation, Timoshenko
accounts for shear deformations and also the cross section does not
remain normal after deformation of the beam, albeit it is still rigid on its
plane. As a legacy of mentioned assumptions, the classical models
cannot capture the higher-order manner of beam structures such as
warping, in-plane distortion of cross section and shear effects. To
compensate these drawbacks of classical theories, various higher-order
shear deformation theories (HSDTs) have been developed and some of
them are well documented in [4,5]. HSDTs are usually formulated by
axiomatic assumptions and based on fixed-order expansions of the
generalized unknowns. Besides eliminating Poisson locking and the
need for shear correction factors, these theories provide more realistic
mathematical models to consider higher-order effects. In addition, the
displacement field expansions employed in CUF, are able to expand
unknown fields with any order of expansion. Indeed, the order of

expansion is considered as a free parameter in CUF. Carrera introduced
a class of 2D theories using a compact notation in [6] which was later
named as CUF in literature. Mentioned compact notation facilitates
expanding displacement field to an arbitrary order of expansion. To this
end, a single 3× 3 matrix so-called ‘‘fundamental nuclei’’ has been uti-
lized that can easily formulate variable description without any de-
pendency on type and order of expansion. The theoretical foundation of
the unified method is presented in the comprehensive article by Carrera
[7]. Then, the CUF has been developed in the formulation of beam
structures [8–15].

Besides higher-order theories, IGA is employed to compensate for
the drawbacks of classical finite element methods. During the past
decades, the finite element method has been developed as a strong tool
for engineering problems, whereas a discretized geometry obtained
through the meshing process is needed which often results in geome-
trical errors. In addition, to reach the desired accuracy, a remeshing
process is required during analysis that leads to a time-consuming
process because of the interaction between the CAD system and the
analysis. Hence, the initial work in Isogeometric analysis was motivated
by the existing gap between the worlds of finite element analysis (FEA)
and computer-aided design (CAD). In fact, IGA has overcome this gap
by using the same functions to describe the exact geometry and ap-
proximate the solution field. This means that the mesh refinement is
simply accomplished by reindexing the parametric space. Indeed, the
refinement process can proceed without interaction with the CAD
system [16,17]. NURBS (non-uniform rational B-spline) functions as a
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general form of B-spline functions were first used by Hughes et al. [16]
as basis functions to approximate solution field. Furthermore, NURBS-
based approaches have been developed in a wide range of research
areas such as fluid–structure interaction [18–20] shell analysis [21–25],
structural analysis [26,27], fracture mechanics [28,29]. Also, a com-
bination of IGA and CUF has been proposed to analyze composite la-
minated plates, see [30,31]. Furthermore, a numerical overview of IGA
has been presented in [32].

In this paper, B-spline functions are adopted along with CUF, whose
hierarchical capabilities allow one to adopt different approximation
function indistinctly. B-spline functions are employed in this article due
to their interesting attributes. Besides a precise geometric modeling, the
B-spline functions show unique properties in analysis. B-spline func-
tions not only depict the exact geometry of the beam model, but also
they show unique characteristics in analysis. The order of the B-spline
functions can be applied as a free parameter in analysis and it can be
counted as one of their most obvious features. Given this specification,
higher-order B-spline functions can be utilized to reduce the effect of
shear locking phenomenon.

2. Refined beam theories by CUF

As it is mentioned previously, classical beam models cannot foresee
higher-order manner of beam structures. Therefore, more sophisticated
models are needed to predict higher-order variables [33]. CUF defines
the displacement field in a compact form [10] as in Eq. (1):

= =u ux y z F x z y τ M( , , ) ( , ) ( ), 1, 2, ...,τ τ (1)

Where u (x, y, z) is the 3D displacement vector, Fτ are generic functions
on the cross section in the coordinates x and z. uτ is the generalized
displacement vector along the beam axis. Also, τ represents summation
and M stands for the number of terms used in the expansion. Using a
Taylor-like expansion, the displacement field can be expanded to an
arbitrary order. For instance, a linear expansion (N=1) of solution
field can be developed as follows:
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The linear expansion generates nine displacement variables, three
constant and six linear. In a unified manner, higher orders of dis-
placement field can be developed by increasing the number of expan-
sion terms M. For example, a parabolic expansion of displacement field
(N=2, M = 6) can be written as:
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The second-order beam model mentioned in Eq. (3) generates 18
displacement variables, three constant, six linear and nine parabolic.
Taylor-like polynomials for any order of beam model are presented in
Table 1.

3. Stiffness matrix

CUF assembles finite element matrices in the terms of fundamental
nucleus. The Principle of Virtual Displacements (PVD) is used to derive
the governing equations. According to the PVD, Eq. (4) is defined:

= −δL δL δLint ext ine (4)

Where δLint stands for virtual variation of the strain energy, δLext de-
notes virtual variation of the work of external loads and δLine is the
virtual variation of the work of inertial loads. Stress (σ) and strain (ε)
components are arranged in Eq. (5):
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Linear strain–displacement relations and Hooke's law can be written
as:

=
=

ε b u
σ C ε (6)

Where b is operator matrix and C is material coefficient matrix that are
available in [17]. Then, the virtual variation of the strain energy is
considered as:

∫= ε σδL δ dVint
V

T

(7)

Displacement field and its virtual variation (denoted by δ) are ap-
proximated using B-spline basis functions as Eq. (8):
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Where i and j denote summation over the B-spline shape functions and
Nc is the number of control points. Fτ and Fs are generic functions, Ri

and Rj are B-spline functions and uτi and uδ sj are nodal unknowns.
According to the Eq. (8), B-spline functions approximate displacement
field along the beam axis and, Fτ and Fs describe displacement variables
on the cross section. These two approximations are shown in Fig. 1
schematically.

Representing Eq. (8) into Eq. (7), a 3×3 matrix will be generated
which is called “fundamental nuclei” (FN) of the stiffness matrix:
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Table 1
Taylor-like polynomials.

N M Fτ

0 1 =F 11
1 3 = =F x F z2 3
2 6 = = =F x F xz F z4 2 5 6 2

3 10 = = = =F x F xz F xz F z7 3 8 2 9 2 10 3

. . .
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Fig. 1. Representation of the axial approximation (using B-spline basis func-
tions), and the cross section expansion (using Fτ and Fs).
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