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A B S T R A C T

Multi-strake cylindrical and conical shells of revolution are complex but commonplace industrial structures
which are composed of multiple segments of varying wall thickness. They find application as tanks, silos, circular
hollow sections, aerospace structures and wind turbine support towers, amongst others. The modelling of such
structures with classical finite elements interpolated using low order polynomial shape functions presents a
particular challenge, because many elements must be sacrificed solely in order to accurately represent the re-
gions of local compatibility bending, so-called ‘boundary layers’, near shell boundaries, changes of wall thickness
and at other discontinuities. Partitioning schemes must be applied to localise mesh refinement within the
boundary layers and avoid excessive model runtimes, a particular concern in incremental nonlinear analyses of
large models where matrix systems are handled repeatedly.

In a previous paper, the authors introduced a novel axisymmetric cylindrical shell finite element that was
enriched with transcendental shape functions to capture the bending boundary layer exactly, permitting sig-
nificant economies in the element and degrees of freedom count, mesh design and model generation effort. One
element is sufficient per wall strake. This paper extends this work to conical geometries, where axisymmetric
elements enriched with Bessel functions accurately capture the bending boundary layer for both ‘shallow’ and
‘steep’ conical strakes, which are characterised by interacting and independent boundary layers, respectively.
The bending shape functions are integrated numerically, with several integration schemes investigated for ac-
curacy and efficiency. The potential of the element is illustrated through a stress analysis of a real 22-strake
metal wind turbine support tower under self-weight. The work is part of a wider project to design a general
three-dimensional ‘boundary layer’ element.

1. Introduction

Cylindrical shells find widespread application as containment
structures, supporting structures and aerospace vehicles. Their ubiquity
is a result of the relative ease of construction of cylindrical geometries
and of the relative simplicity of their manual dimensioning, typically
performed using shell membrane theory. This determinate theory is
based on balancing external loads with internal membrane stress re-
sultants only, disregarding the high local bending stresses that may
arise in response to kinematic compatibility requirements at a boundary
or change of wall thickness. These stresses decay away from the dis-
continuity at an exponential rate, forming a ‘boundary layer’ whose
length can be taken as two bending half-wavelengths λ [1]. For a thin
cylinder, λ is usually small relative to the length of the strake, and the
membrane theory solution is therefore valid over the majority of the
cylinder. Where this is not the case, a manual application of axisym-
metric shell bending theory is just about practical for uniform thickness
cylinders [1–3]. The membrane theory treatment of cones is

straightforward due to their straight meridian, however their classical
bending theory treatment is made quite challenging by the necessity for
the analyst to manipulate Bessel functions [1,4–6]. Cui et al. derived an
analytical theory that circumvents the use of Bessel functions while
delivering a better accuracy than the equivalent cylinder method [7],
but numerical methods tend to be preferred even for stress analyses,
although they require a careful mesh design to capture the boundary
layer effect.

The authors’ previous ‘proof of concept’ study [8] adopted the novel
approach of distinguishing between the ‘membrane’ and ‘bending’
components of the shell's kinematic degrees of freedom (DOFs) and
interpolating these separately to create a linear axisymmetric ‘Cylind-
rical Shell Boundary Layer’ (CSBL) element. The membrane displace-
ments were interpolated with simple polynomial functions, but bending
displacements were interpolated with transcendental functions derived
from the governing differential equation, enriching the element's in-
terpolation field to support the boundary layer natively. An illustration
on a number of realistic multi-strake civil engineering shell structures
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showed that the CSBL offered significant advantages in terms of re-
duced elements and DOFs counts, mesh design and accuracy over a
‘classical’ shell element with polynomial shape functions based on
Zienkiewicz et al. [9].

The same approach will be followed in this paper to derive a conical
version of this element, here termed ‘CoSBL’. The authors first present a
brief derivation of axisymmetric bending theory for conical shells in
order to establish the strong form differential equation (following
Flügge [4]), as its solution will provide the functional form for the in-
terpolation field of the bending component of the total displacements
(the membrane component will be interpolated with simple functions,
as for the CSBL). Various integration schemes for the CoSBL stiffness
matrix are explored (with results presented in the Appendix for com-
pactness), and two dimensionless parameters are identified to char-
acterise the relationship between the two boundary layers of a CoSBL
element. Finally, the potential of the element is illustrated on a complex
and realistic 22-strake civil engineering structure.

Readers are invited to consult Chapelle and Bathe [10] for a detailed
review of the widespread literature on classical shell finite elements.
The authors are aware only of the work of Bhatia and Sekhon that is of
direct relevance to this paper, who successfully developed ‘macro’ cy-
lindrical, conical and spherical linear axisymmetric shell elements
[11–13] using a method described in [14]. It does not rely on the de-
finition of bending shape functions, using instead the integration con-
stants of the solution to the governing differential equation as implicit
DOFs. The solutions presented accommodate constant distributed loads,
although the method supports extension to arbitrary load distributions.
Single-strake problems are used for illustration, but the physical sig-
nificance of the solution and its governing parameters are not discussed
in detail.

2. Axisymmetric bending theory for thin isotropic conical shells

The present derivation of the bending theory for isotropic conical
shells is adapted from Flügge [4], specialised for axisymmetric cones of
constant thickness with all assumptions stated before any equation
manipulation. The first step in the derivation, first introduced by Re-
issner [15], is to solve for the shear force and shell midsurface rotation
rather than the radial or meridional displacements. The second step is
the identification of the Meissner differential operator [16] allowing for
the decoupling of the resulting equations. The last step involves a
change of variable from the slant height to a dimensionless parameter
to reveal Bessel's differential equation. The physical significance of this
parameter and the boundary-layer behaviour of the bending solution is
discussed in a later part of the paper.

2.1. Equilibrium, kinematics and constitutive relations

A conical shell of apex half-angle π/2− α (where 0 < α < π/2)
and thickness t may be subject to distributed loads pn and ps that are
respectively normal and tangential to the midsurface (Fig. 1). Assuming
axisymmetry of the loading, boundary conditions and geometry, five
stress resultants act on the mid-surface: the meridional and circumfer-
ential membrane stress resultants ns and nθ, the bending moment stress
resultants ms and mθ, and the meridional transverse shear stress re-
sultant qs. No displacements, shears or gradients arise in the cir-
cumferential θ direction. It is assumed that the conical shell is a frustum
bounded by its slant height coordinates s1 and s2 (s1< s2), leading to
the following radial and vertical coordinates:
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The following classical linear-elastic constitutive and thin-shell ki-
nematics relationships for a conical shell are adopted (where w and u
are the normal and meridional midsurface displacements respectively,
while χ is the midsurface rotation about the circumferential axis):
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2.2. Uncoupled differential equation

The key to identifying the conical shell bending differential equa-
tion is to solve for the variables s⋅qs and χ. This requires recasting the
membrane kinematic relations as the following:

= ′−χ c sε ε(( ) )θ s (5)

From this and the equilibrium equations (Eq. (2)), the following two
differential equations are obtained, where the Meissner differential
operator Λ can now be identified:
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A further application of Λ on the second differential equation
achieves the decoupling:
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Solutions to this fourth-order real differential equation are the su-
perposition of a particular solution responsible for balancing the loads,
referred to as the ‘membrane’ solution and a linear combination of four
functions solution to the homogeneous equation (i.e. for pn= ps=g=0),
referred to as the ‘bending’ solution that accommodates boundary
conditions. The total value of any quantity is obtained by superposition,
e.g. w=wb+wm and ns= nsb + nsm.

Once a solution for s⋅qs is obtained, the associated stress, strain and
displacement fields can be deduced. The second equation from Eq. (6) is
used to obtain χ, while the second equilibrium equation in Eq. (2)
yields nθ which, in combination with the first, yields ns. The bending
kinematic relations (Eq. (4)) lead to curvatures which, when combined
with the bending constitutive relations (Eq. (3)), are used to obtain ms

and mθ. The inverse of the membrane constitutive relations (Eq. (3))
can be used to obtain membrane strains from membrane stresses, from
which u and w are then finally deduced.
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