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A B S T R A C T

In this paper a novel method for the analysis of thin-walled members is presented: the constrained finite element
method. The method is basically a shell finite element analysis, but carefully defined constraints are applied
which enforce the thin-walled member to deform in accordance with specific mechanical criteria, e.g., to force
local, global or distortional deformations. The constrained finite element method is essentially similar to the
constrained finite strip method, but the trigonometric longitudinal shape functions of the finite strip method are
replaced by polynomial longitudinal shape functions, which – together with longitudinal discretization –
transforms a finite strip into multiple finite elements. This change in longitudinal interpolation makes the
method applicable for a wide range of practical problems not yet handled by other modal decomposition
methods. The new shell finite element is briefly presented here, but the main focus of this paper is on how the
constraining criteria can be applied for a thin-walled member. More specifically, in this paper a band of finite
elements is discussed in detail, where ‘band’ is a segment of the member with multiple elements along the cross-
section, but with one single finite element longitudinally. The possible base systems for the various deformation
spaces are demonstrated here. Members built up from multiple bands are discussed and presented in a
companion paper, where various numerical examples are also provided to illustrate the potential of the proposed
constrained finite element method.

1. Introduction

A widely used practical approach to understand and analyse the
complex behaviour of a structural member is to decompose the complex
phenomenon into simpler ones, and then to interpret the complex
phenomenon as a superposition of simpler phenomena. This is the
reason why the deformations of a thin-walled beam or column member
are frequently categorized into simpler yet practically meaningful
deformation classes: global, distortional, local-plate and other classes,
based on some characteristic features of the deformations.

In case of thin-walled members (e.g., cold-formed steel members)
the deformations are frequently categorized into characteristic classes
as follows: global (G), distortional (D), local-plate (L), shear (S) and
transverse extension (T) behaviour. In many practical situations G, D
and L are the most important ones.

The modal decomposition of the behaviour of a thin-walled member
has been found especially useful to understand and analyse the stability
behaviour, the behaviour which is governing in many practical situa-
tions due to the thin-walled nature, i.e., high slenderness of the
structure. The classification is used in capacity prediction, too, and
appears either implicitly or explicitly in current design standards for

cold-formed steel, see [1, 2]. Though the knowledge of pure buckling
modes and the values of the associated critical loads are essential in the
design of thin-walled members, still there are practical cases when
modal decomposition has not been possible. So far there have been two
available methods with general modal decomposition features: the
generalized beam theory (GBT), see e.g. [3–5] and the constrained
finite strip method (cFSM), see e.g. [6–11]. Both methods are available
in software applications, namely: GBTUL [12, 13] and CUFSM [14, 15],
but either the method or its current implementation has limitations.

Many of cFSM limitations derive from FSM itself. FSM requires that
the member is flat-walled and prismatic, as well as arbitrary end
restraints cannot be handled efficiently. The requirement of prismatic
sections, shared also by GBT, prevents direct application to tapered
members, and members with holes. Recent works aimed at partially
removing these limitations, by generalizing cFSM for certain end
restraint [16, 17], or applying cFSM base functions or GBT cross-
section deformation modes to modal identification of shell FEM
deformations fields [18–22], or by applying the constraining technique
for spline FSM [23] or shell FEM [24, 25], or by working out methods
for the analysis of members with holes [26–34]. Nevertheless, all these
attempts have not lead to a simple and easily applicable general method
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with modal features.
In this paper a novel method is discussed. The proposed method

follows the logic of cFSM, however, the longitudinal shape functions are
changed and applied together with a longitudinal discretization. Thus,
strips are transformed into multiple shell finite elements. The long-
itudinal shape functions are selected in such a way that modal
decomposition similar to cFSM can be realized, therefore, the new
method can be described as constrained finite element method (cFEM),
possessing all the modal features of cFSM, but with significantly more
flexibility in its application.

Though in [24, 25] constraints are applied to shell finite element
models, the here-used cFEM is significantly different, since (a) cFEM
provides a full modal decomposition, i.e., the whole displacement field
is transformed into a modal system, which allows modal identification,
too, (b) in cFEM the mechanical criteria of the modes are exactly
satisfied, and (c) in cFEM adding constraints reduces the DOF number
of the problem. Moreover, though thin-walled members with holes are
lately investigated by various researchers, cFEM approach is substan-
tially different. In [23, 26, 27] the finite strip method is used, which is
obviously different from finite element, and necessarily approximate in
the presence of holes. In [28–30] shell finite element models are
applied, but without constraints. In [31–34] the generalized beam
theory is extended to members with holes, and though the mechanical
background of these latter methods might be rather similar to the here-
proposed cFEM, the practical realization of the generalized beam theory
is quite different from that of a shell finite element analysis. It seems to
be fair to state that shell finite element analysis is widely used by
researchers and practitioners all over the world, therefore shell FEM is
an obvious tool to be used in modal decomposition.

The cFEM has first been reported in [35–37]. The cFEM method is
using shell finite elements, therefore, various engineering problems can
be solved. Since cFEM uses a specific rectangular shell finite element, a
rectangular mesh is necessary. This required regularity of the mesh
means a practical limitation, but otherwise the method is general: first-
and second-order static analysis as well as dynamic analyses can be
performed, for arbitrary loading and boundary conditions. Holes can
easily be handled, too, once they fit (exactly or approximately) into the
rectangular mesh.

cFEM uses a novel shell finite element, specifically designed for the
method. The new element keeps the transverse interpolation functions
of finite strips, however, the longitudinal interpolation functions are
changed from trigonometric functions (or function series) to classic
polynomials. It is found, however, that the polynomial longitudinal
interpolation functions must be specially selected in order to be able to
perform modal decomposition similarly as in cFSM. This requires an
unusual combination of otherwise well-known shape functions. The
proposed interpolation functions and their derivation can be found in
detail in [38].

In [38] it is also shown that the mechanical constraints on which the
whole decomposition procedure is based can be satisfied exactly within
the proposed shell finite element. The focus of the actual paper is on the
modal decomposition for a member discretized into multiple shell
elements. More specifically, in this paper the application of the
constraints for a band of shell finite elements is presented, where
‘band’ is a segment of the member with multiple elements along the
cross-section, but with one single finite element longitudinally. Though
one band of finite elements rarely enough to solve a practical problem,
the discussion of a band is important since (i) it is easier to present the
constraining procedure and the resulted base systems if cFEM is applied
for a band, and (ii) the base systems of a band can easily be applied for a
real member consisted of multiple bands. This latter question is
discussed in a paper companion to this paper [39], where numerical
examples are also presented to prove the applicability and potentials of
the constrained finite element method.

2. Converting a finite strip into a finite element

2.1. FSM essentials

The finite strip method (FSM) is a shell-model-based discretization
method. The most essential feature of FSM is that there are two pre-
defined directions, and the base functions (or: interpolation functions)
are different in the two directions. In classical semi-analytical FSM, as
in [40, 41], the structural member to be analysed is discretized only in
one direction (say: transverse direction), while in the other direction
(say: longitudinal direction) there is no discretization, i.e., in this
direction there is only one element (i.e., strip) along the member, as
shown in Fig. 1. (Note, Fig. 1 illustrates the nodal displacements for the
simplest longitudinal shape function as given in Eqs. (1)–(3), with
m=1.)

In a strip it is typical to express the displacement functions as a
product of transverse and longitudinal base functions. In the transverse
directions polynomials are used, while in the longitudinal direction
trigonometric functions can beneficially be used. Since there is no
longitudinal discretization, the longitudinal interpolation function must
well represent the behaviour, and especially, must satisfy the boundary
conditions. If the end restraints are locally and globally pinned, the
widely used FSM displacement functions are as follows (with using the
notations of Fig. 1.

⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥u x y

u
u cos mπx

a
( , )= (1− ) ( )y

b
y
b

1
2 (1)

⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥v x y

v
v sin mπx

a
( , )= (1− ) ( )y

b
y
b

1
2 (2)

Fig. 1. Finite strip discretization, strip DOF, and notation.
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